202,670 research outputs found
Integrable SU(m|n) supersymmetric electronic models of strong correlations
We generalize the SU(2|2) supersymmetric extended Hubbard model of 1/r2
interaction to the SU(m|n) supersymmetric case. Integrable models may be
defined on both uniform lattice and non-uniform one dimensional lattices. We
study both cases in detail and present the ground state wavefunctions and
energy spectra of these models.Comment: 24 pages, Late
Complex Dynamics of Correlated Electrons in Molecular Double Ionization by an Ultrashort Intense Laser Pulse
With a semiclassical quasi-static model we achieve an insight into the
complex dynamics of two correlated electrons under the combined influence of a
two-center Coulomb potential and an intense laser field. The model calculation
is able to reproduce experimental data of nitrogen molecules for a wide range
of laser intensities from tunnelling to over-the-barrier regime, and predicts a
significant alignment effect on the ratio of double over single ion yield. The
classical trajectory analysis allows to unveil sub-cycle molecular double
ionization dynamics.Comment: 5 pages, 5 figures. to appear in Phys. Rev. Lett.(2007
Mediating exchange bias by Verwey transition in CoO/Fe3O4 thin film
We report the tunability of the exchange bias effect by the first-order
metal-insulator transition (known as the Verwey transition) of Fe3O4 in CoO (5
nm)/Fe3O4 (40 nm)/MgO (001) thin film. In the vicinity of the Verwey
transition, the exchange bias field is substantially enhanced because of a
sharp increase in magnetocrystalline anisotropy constant from high-temperature
cubic to lowtemperature monoclinic structure. Moreover, with respect to the
Fe3O4 (40 nm)/MgO (001) thin film, the coercivity field of the CoO (5 nm)/Fe3O4
(40 nm)/MgO (001) bilayer is greatly increased for all the temperature range,
which would be due to the coupling between Co spins and Fe spins across the
interface
Classical Trajectory Perspective on Double Ionization Dynamics of Diatomic Molecules Irradiated by Ultrashort Intense Laser Pulses
In the present paper, we develop a semiclassical quasi-static model
accounting for molecular double ionization in an intense laser pulse. With this
model, we achieve insight into the dynamics of two highly-correlated valence
electrons under the combined influence of a two-center Coulomb potential and an
intense laser field, and reveal the significant influence of molecular
alignment on the ratio of double over single ion yield. Analysis on the
classical trajectories unveils sub-cycle dynamics of the molecular double
ionization. Many interesting features, such as the accumulation of emitted
electrons in the first and third quadrants of parallel momentum plane, the
regular pattern of correlated momentum with respect to the time delay between
closest collision and ionization moment, are revealed and successfully
explained by back analyzing the classical trajectories. Quantitative agreement
with experimental data over a wide range of laser intensities from tunneling to
over-the-barrier regime is presented.Comment: 8 pages, 9 figure
Neutron Electric Dipole Moment at Fixed Topology
We describe the finite volume effects of CP-odd quantities, such as the
neutron electric dipole moment and the anapole moment in the -vacuum,
under different topological sectors. We evaluate the three-point Green's
functions for the electromagnetic current in a fixed non-trivial topological
sector in order to extract these CP-odd observables. We discuss the role of
zero modes in the CP-odd Green's function and show that, in the quenched
approximation, there is a power divergence in the quark mass for CP-odd
quantities at finite volume.Comment: 12 pages, revised manuscript to be publishe
- …