12,395 research outputs found

    Formation of the First Stars by Accretion

    Get PDF
    The process of star formation from metal-free gas is investigated by following the evolution of accreting protostars with emphasis on the properties of massive objects. The main aim is to establish the physical processes that determine the upper mass limit of the first stars. Although the consensus is that massive stars were commonly formed in the first cosmic structures, our calculations show that their actual formation depends sensitively on the mass accretion rate and its time variation. Even in the rather idealized case in which star formation is mainly determined by dot{M}acc, the characteristic mass scale of the first stars is rather uncertain. We find that there is a critical mass accretion rate dot{M}crit = 4 10^{-3} Msun/yr that separates solutions with dot{M}acc> 100 Msun can form, provided there is sufficient matter in the parent clouds, from others (dot{M}acc > dot{M}crit) where the maximum mass limit decreases as dot{M}acc increases. In the latter case, the protostellar luminosity reaches the Eddington limit before the onset of hydrogen burning at the center via the CN-cycle. This phase is followed by a rapid and dramatic expansion of the radius, possibly leading to reversal of the accretion flow when the stellar mass is about 100Msun. (abridged)Comment: 34 pages, 12 figures. ApJ, in pres

    Estimating the Impacts of Storage Dry Matter Losses on Switchgrass Production

    Get PDF
    This poster estimates dry matter losses as a function of harvest method, storage treatment, and time in storage. We then calculate the cost to store switchgrass bales under alternate harvest method and storage treatment scenarios; and determine the breakeven harvest method and storage treatment as a function of biomass price and time in storage.Biomass, bioenergy crops, function form, sustainable systems, Farm Management, Production Economics, Q10, Q42,

    Quiescent Cores and the Efficiency of Turbulence-Accelerated, Magnetically Regulated Star Formation

    Full text link
    The efficiency of star formation, defined as the ratio of the stellar to total (gas and stellar) mass, is observed to vary from a few percent in regions of dispersed star formation to about a third in cluster-forming cores. This difference may reflect the relative importance of magnetic fields and turbulence in controlling star formation. We investigate the interplay between supersonic turbulence and magnetic fields using numerical simulations, in a sheet-like geometry. We demonstrate that star formation with an efficiency of a few percent can occur over several gravitational collapse times in moderately magnetically subcritical clouds that are supersonically turbulent. The turbulence accelerates star formation by reducing the time for dense core formation. The dense cores produced are predominantly quiescent, with subsonic internal motions. These cores tend to be moderately supercritical. They have lifetimes long compared with their local gravitational collapse time. Some of the cores collapse to form stars, while others disperse away without star formation. In turbulent clouds that are marginally magnetically supercritical, the star formation efficiency is higher, but can still be consistent with the values inferred for nearby embedded clusters. If not regulated by magnetic fields at all, star formation in a multi-Jeans mass cloud endowed with a strong initial turbulence proceeds rapidly, with the majority of cloud mass converted into stars in a gravitational collapse time. The efficiency is formally higher than the values inferred for nearby cluster-forming cores, indicating that magnetic fields are dynamically important even for cluster formation.Comment: submitted to Ap

    Development of a coaxial plasma gun for space propulsion final report

    Get PDF
    Current sheet accelerators and pulsed plasma thrustors for spacecraft propulsio

    Improving grinding efficiency with the IsaMill

    Get PDF

    Is Switchgrass Yield Response to Nitrogen Fertilizer Dynamic? Implications for Profitability and Sustainability at the Farm Level

    Get PDF
    Revised version of the paper submitted 2/11/2010Biomass, Energy Crops, Sequential Inputs, West Tennessee, Crop Production/Industries, Farm Management, Production Economics, Resource /Energy Economics and Policy,

    Level crossings in a cavity QED model

    Full text link
    In this paper I study the dynamics of a two-level atom interacting with a standing wave field. When the atom is subjected to a weak linear force, the problem can be turned into a time dependent one, and the evolution is understood from the band structure of the spectrum. The presence of level crossings in the spectrum gives rise to Bloch oscillations of the atomic motion. Here I investigate the effects of the atom-field detuning parameter. A variety of different level crossings are obtained by changing the magnitude of the detuning, and the behaviour of the atomic motion is strongly affected due to this. I also consider the situation in which the detuning is oscillating in time and its impact on the atomic motion. Wave packet simulations of the full problem are treated numerically and the results are compared with analytical solutions given by the standard Landau-Zener and the three-level Landau-Zener models.Comment: 12 pages, 10 figure

    Switchgrass Production in Marginal Environments: A Comparative Economic Analysis across Four West Tennessee Landscapes

    Get PDF
    Switchgrass (Panicum virgatum L.) has been identified as a model feedstock for the emerging biofuels industry. Its selection was based, in part, upon the observation that switchgrass can produce high yields in marginal production environments. This trait may become particularly valuable in coming years, as renewable fuel mandates begin to take effect and concerns over the food-versus-fuel debate increase. Relatively little research information exists about how management practices and production costs vary across different production environments. The objectives of this research were (a) to compare switchgrass yields as influenced by seeding rate and nitrogen fertilization rates in low-, intermediate-, and high-yielding switchgrass production environments, (b) to determine the economically optimal seeding rate and nitrogen fertilization rate for each environment, and (c) to calculate per-ton production costs. Experimental yield data from four locations were utilized for this study. Plots were seeded in 2004 with treatments of 2.5, 5.0, 7.5, 10.0, and 12.5 lbs/acre. Nitrogen was applied in subsequent intervals at 0, 60, 120 and 180 lbs/acre. For an expected stand lifespan of 10 years, production costs ranged from 45pertoninawelldrainedleveluplandenvironmentidealfortheproductionofrowcropsto45 per ton in a well drained level upland environment ideal for the production of row crops to 70 per ton in a marginal, poorly drained flood plain in which the switchgrass stand was slow to establish and which demonstrated lower overall yields.Crop Production/Industries, International Relations/Trade,

    Modeling a high mass turn down in the stellar initial mass function

    Get PDF
    Statistical sampling from the stellar initial mass function (IMF) for all star-forming regions in the Galaxy would lead to the prediction of ~1000 Msun stars unless there is a rapid turn-down in the IMF beyond several hundred solar masses. Such a turndown is not necessary for dense clusters because the number of stars sampled is always too small. Here we explore several mechanisms for an upper mass cutoff, including an exponential decline of the star formation probability after a turbulent crossing time. The results are in good agreement with the observed IMF over the entire stellar mass range, and they give a gradual turn down compared to the Salpeter function above ~100 Msun for normal thermal Jeans mass, M_J. The upper mass turn down should scale with M_J in different environments. A problem with the models is that they cannot give both the observed power-law IMF out to the high-mass sampling limit in dense clusters, as well as the observed lack of supermassive stars in whole galaxy disks. Either there is a sharper upper-mass cutoff in the IMF, perhaps from self-limitation, or the IMF is different for dense clusters than for the majority of star formation that occurs at lower density. Dense clusters seem to have an overabundance of massive stars relative to the average IMF in a galaxy.Comment: 19 pages, 2 figures, Astrophysical Journal, Vol 539, August 10, 200
    • 

    corecore