2,309 research outputs found
A lower bound to the spectral threshold in curved tubes
We consider the Laplacian in curved tubes of arbitrary cross-section rotating
together with the Frenet frame along curves in Euclidean spaces of arbitrary
dimension, subject to Dirichlet boundary conditions on the cylindrical surface
and Neumann conditions at the ends of the tube. We prove that the spectral
threshold of the Laplacian is estimated from below by the lowest eigenvalue of
the Dirichlet Laplacian in a torus determined by the geometry of the tube.Comment: LaTeX, 13 pages; to appear in R. Soc. Lond. Proc. Ser. A Math. Phys.
Eng. Sc
Lieb-Thirring inequalities for geometrically induced bound states
We prove new inequalities of the Lieb-Thirring type on the eigenvalues of
Schr\"odinger operators in wave guides with local perturbations. The estimates
are optimal in the weak-coupling case. To illustrate their applications, we
consider, in particular, a straight strip and a straight circular tube with
either mixed boundary conditions or boundary deformations.Comment: LaTeX2e, 14 page
Geometric coupling thresholds in a two-dimensional strip
We consider the Laplacian in a strip with the
boundary condition which is Dirichlet except at the segment of a length of
one of the boundaries where it is switched to Neumann. This operator is known
to have a non-empty and simple discrete spectrum for any . There is a
sequence of critical values at which new eigenvalues emerge
from the continuum when the Neumann window expands. We find the asymptotic
behavior of these eigenvalues around the thresholds showing that the gap is in
the leading order proportional to with an explicit coefficient
expressed in terms of the corresponding threshold-energy resonance
eigenfunction
Quantum waveguides with a lateral semitransparent barrier: spectral and scattering properties
We consider a quantum particle in a waveguide which consists of an infinite
straight Dirichlet strip divided by a thin semitransparent barrier on a line
parallel to the walls which is modeled by a potential. We show that if
the coupling strength of the latter is modified locally, i.e. it reaches the
same asymptotic value in both directions along the line, there is always a
bound state below the bottom of the essential spectrum provided the effective
coupling function is attractive in the mean. The eigenvalues and
eigenfunctions, as well as the scattering matrix for energies above the
threshold, are found numerically by the mode-matching technique. In particular,
we discuss the rate at which the ground-state energy emerges from the continuum
and properties of the nodal lines. Finally, we investigate a system with a
modified geometry: an infinite cylindrical surface threaded by a homogeneous
magnetic field parallel to the cylinder axis. The motion on the cylinder is
again constrained by a semitransparent barrier imposed on a ``seam'' parallel
to the axis.Comment: a LaTeX source file with 12 figures (11 of them eps); to appear in J.
Phys. A: Math. Gen. Figures 3, 5, 8, 9, 11 are given at 300 dpi; higher
resolution originals are available from the author
A single-mode quantum transport in serial-structure geometric scatterers
We study transport in quantum systems consisting of a finite array of N
identical single-channel scatterers. A general expression of the S matrix in
terms of the individual-element data obtained recently for potential scattering
is rederived in this wider context. It shows in particular how the band
spectrum of the infinite periodic system arises in the limit . We
illustrate the result on two kinds of examples. The first are serial graphs
obtained by chaining loops or T-junctions. A detailed discussion is presented
for a finite-periodic "comb"; we show how the resonance poles can be computed
within the Krein formula approach. Another example concerns geometric
scatterers where the individual element consists of a surface with a pair of
leads; we show that apart of the resonances coming from the decoupled-surface
eigenvalues such scatterers exhibit the high-energy behavior typical for the
delta' interaction for the physically interesting couplings.Comment: 36 pages, a LaTeX source file with 2 TeX drawings, 3 ps and 3 jpeg
figures attache
Spectrum of the Schr\"odinger operator in a perturbed periodically twisted tube
We study Dirichlet Laplacian in a screw-shaped region, i.e. a straight
twisted tube of a non-circular cross section. It is shown that a local
perturbation which consists of "slowing down" the twisting in the mean gives
rise to a non-empty discrete spectrum.Comment: LaTeX2e, 10 page
Topologically non-trivial quantum layers
Given a complete non-compact surface embedded in R^3, we consider the
Dirichlet Laplacian in a layer of constant width about the surface. Using an
intrinsic approach to the layer geometry, we generalise the spectral results of
an original paper by Duclos et al. to the situation when the surface does not
possess poles. This enables us to consider topologically more complicated
layers and state new spectral results. In particular, we are interested in
layers built over surfaces with handles or several cylindrically symmetric
ends. We also discuss more general regions obtained by compact deformations of
certain layers.Comment: 15 pages, 6 figure
- …
