145 research outputs found

    Long Range Hydration Effects in Electrolytic Free Suspended Black Films

    Full text link
    The force law within free suspended black films made of negatively charged Aerosol-OT (AOT) with added LiCl or CsCl is studied accurately using X-ray reflectivity (ca. 1{\AA}). We find an electrolyte concentration threshold above which a substantial additional repulsion is detected in the LiCl films, up to distances of 100 {\AA}. We interpret this phenomenon as an augmentation of the Debye screening length, due to the local screening of the condensed hydrophilic counterions by the primary hydration shell.Comment: 4 pages, 4 figures, to be published Phys. Rev. Let

    The field theoretic derivation of the contact value theorem in planar geometries and its modification by the Casimir effect

    Full text link
    The contact value theorem for Coulomb gases in planar or film-like geometries is derived using a Hamiltonian field theoretic representation of the system. The case where the film is enclosed by a material of different dielectric constant to that of the film is shown to contain an additional Casimir-like term which is generated by fluctuations of the electric potential about its mean-field value.Comment: Link between Sine-Gordon and Coulomb gas pressures via subtraction of self interaction terms included. Discussion of results within Debye-Huckel approximation included. Added reference

    Direct Observation of the Dynamics of Latex Particles Confined inside Thinning Water-Air Films

    Get PDF
    The dynamics of micrometer-size polystyrene latex particles confined in thinning foam films was investigated by microscopic interferometric observation. The behavior of the entrapped particles depends on the mobility of the film surfaces, the particle concentration, hydrophobicity, and rate of film formation. When the films were stabilized by sodium dodecyl sulfate, no entrapment of particles between the surfaces was possible. When protein was used as a stabilizer, a limited number of particles were caught inside the film area due to the decreased mobility of the interfaces. In this case, extraordinary long-ranged (>100 Ìm) capillary attraction leads to two-dimensional (2D) particle aggregation. A major change occurs when the microspheres are partially hydrophobized by the presence of cationic surfactant. After the foam films are opened and closed a few times, a layer of particles simultaneously adsorbed to the two interfaces is formed, which sterically inhibits any further film opening and thinning. The particles within this layer show an excellent 2D hexagonal ordering. The experimental data are relevant to the dynamics of defects in coating films, Pickering emulsions, and particle assembly into 2D arrays

    Thin liquid films from phospholipids: formation, stability and phase transitions

    Full text link

    Dedication

    Full text link
    corecore