145 research outputs found
Long Range Hydration Effects in Electrolytic Free Suspended Black Films
The force law within free suspended black films made of negatively charged
Aerosol-OT (AOT) with added LiCl or CsCl is studied accurately using X-ray
reflectivity (ca. 1{\AA}). We find an electrolyte concentration threshold above
which a substantial additional repulsion is detected in the LiCl films, up to
distances of 100 {\AA}. We interpret this phenomenon as an augmentation of the
Debye screening length, due to the local screening of the condensed hydrophilic
counterions by the primary hydration shell.Comment: 4 pages, 4 figures, to be published Phys. Rev. Let
The field theoretic derivation of the contact value theorem in planar geometries and its modification by the Casimir effect
The contact value theorem for Coulomb gases in planar or film-like geometries
is derived using a Hamiltonian field theoretic representation of the system.
The case where the film is enclosed by a material of different dielectric
constant to that of the film is shown to contain an additional Casimir-like
term which is generated by fluctuations of the electric potential about its
mean-field value.Comment: Link between Sine-Gordon and Coulomb gas pressures via subtraction of
self interaction terms included. Discussion of results within Debye-Huckel
approximation included. Added reference
Direct Observation of the Dynamics of Latex Particles Confined inside Thinning Water-Air Films
The dynamics of micrometer-size polystyrene latex particles confined in thinning foam films was
investigated by microscopic interferometric observation. The behavior of the entrapped particles depends
on the mobility of the film surfaces, the particle concentration, hydrophobicity, and rate of film formation.
When the films were stabilized by sodium dodecyl sulfate, no entrapment of particles between the surfaces
was possible. When protein was used as a stabilizer, a limited number of particles were caught inside
the film area due to the decreased mobility of the interfaces. In this case, extraordinary long-ranged (>100
Ìm) capillary attraction leads to two-dimensional (2D) particle aggregation. A major change occurs when
the microspheres are partially hydrophobized by the presence of cationic surfactant. After the foam films
are opened and closed a few times, a layer of particles simultaneously adsorbed to the two interfaces is
formed, which sterically inhibits any further film opening and thinning. The particles within this layer
show an excellent 2D hexagonal ordering. The experimental data are relevant to the dynamics of defects
in coating films, Pickering emulsions, and particle assembly into 2D arrays
Influence of steroid hormone progesterone on the properties of phosphatidyl serine monolayers and thin liquid films
Enhanced oil recovery by nonionic surfactants considering micellization, surface, and foaming properties
Effect of Permeability on Implicit-Texture Foam Model Parameters and the Limiting Capillary Pressure
Das Potential der diffusen elektrischen Doppelschicht und die Adsorption grenzflächenaktiver Stoffe
- …
