7,339 research outputs found

    Universality in Systems with Power-Law Memory and Fractional Dynamics

    Full text link
    There are a few different ways to extend regular nonlinear dynamical systems by introducing power-law memory or considering fractional differential/difference equations instead of integer ones. This extension allows the introduction of families of nonlinear dynamical systems converging to regular systems in the case of an integer power-law memory or an integer order of derivatives/differences. The examples considered in this review include the logistic family of maps (converging in the case of the first order difference to the regular logistic map), the universal family of maps, and the standard family of maps (the latter two converging, in the case of the second difference, to the regular universal and standard maps). Correspondingly, the phenomenon of transition to chaos through a period doubling cascade of bifurcations in regular nonlinear systems, known as "universality", can be extended to fractional maps, which are maps with power-/asymptotically power-law memory. The new features of universality, including cascades of bifurcations on single trajectories, which appear in fractional (with memory) nonlinear dynamical systems are the main subject of this review.Comment: 23 pages 7 Figures, to appear Oct 28 201

    Density of States of Quantum Spin Systems from Isotropic Entanglement

    Full text link
    We propose a method which we call "Isotropic Entanglement" (IE), that predicts the eigenvalue distribution of quantum many body (spin) systems (QMBS) with generic interactions. We interpolate between two known approximations by matching fourth moments. Though, such problems can be QMA-complete, our examples show that IE provides an accurate picture of the spectra well beyond what one expects from the first four moments alone. We further show that the interpolation is universal, i.e., independent of the choice of local terms.Comment: 4+ pages, content is as in the published versio

    Report of conference evaluation committee

    Get PDF
    A general classification is made of a number of approaches used for the prediction of turbulent shear flows. The sensitivity of these prediction methods to parameter values and initial data are discussed in terms of variable density, pressure fluctuation, gradient diffusion, low Reynolds number, and influence of geometry

    Preliminary results of noble metal thermocouple research program, 1000 - 2000 C

    Get PDF
    Noble metal thermocouple research involving combustion gase

    Probability of local bifurcation type from a fixed point: A random matrix perspective

    Full text link
    Results regarding probable bifurcations from fixed points are presented in the context of general dynamical systems (real, random matrices), time-delay dynamical systems (companion matrices), and a set of mappings known for their properties as universal approximators (neural networks). The eigenvalue spectra is considered both numerically and analytically using previous work of Edelman et. al. Based upon the numerical evidence, various conjectures are presented. The conclusion is that in many circumstances, most bifurcations from fixed points of large dynamical systems will be due to complex eigenvalues. Nevertheless, surprising situations are presented for which the aforementioned conclusion is not general, e.g. real random matrices with Gaussian elements with a large positive mean and finite variance.Comment: 21 pages, 19 figure

    From Random Matrices to Stochastic Operators

    Full text link
    We propose that classical random matrix models are properly viewed as finite difference schemes for stochastic differential operators. Three particular stochastic operators commonly arise, each associated with a familiar class of local eigenvalue behavior. The stochastic Airy operator displays soft edge behavior, associated with the Airy kernel. The stochastic Bessel operator displays hard edge behavior, associated with the Bessel kernel. The article concludes with suggestions for a stochastic sine operator, which would display bulk behavior, associated with the sine kernel.Comment: 41 pages, 5 figures. Submitted to Journal of Statistical Physics. Changes in this revision: recomputed Monte Carlo simulations, added reference [19], fit into margins, performed minor editin

    A Framework for Generalising the Newton Method and Other Iterative Methods from Euclidean Space to Manifolds

    Full text link
    The Newton iteration is a popular method for minimising a cost function on Euclidean space. Various generalisations to cost functions defined on manifolds appear in the literature. In each case, the convergence rate of the generalised Newton iteration needed establishing from first principles. The present paper presents a framework for generalising iterative methods from Euclidean space to manifolds that ensures local convergence rates are preserved. It applies to any (memoryless) iterative method computing a coordinate independent property of a function (such as a zero or a local minimum). All possible Newton methods on manifolds are believed to come under this framework. Changes of coordinates, and not any Riemannian structure, are shown to play a natural role in lifting the Newton method to a manifold. The framework also gives new insight into the design of Newton methods in general.Comment: 36 page

    Julia implementation of the Dynamic Distributed Dimensional Data Model

    Get PDF
    Julia is a new language for writing data analysis programs that are easy to implement and run at high performance. Similarly, the Dynamic Distributed Dimensional Data Model (D4M) aims to clarify data analysis operations while retaining strong performance. D4M accomplishes these goals through a composable, unified data model on associative arrays. In this work, we present an implementation of D4M in Julia and describe how it enables and facilitates data analysis. Several experiments showcase scalable performance in our new Julia version as compared to the original Matlab implementation

    Validation of the determination of amino acids in plasma by high-performance liquid chromatography using automated pre-column derivatization with o-phthaldialdehyde

    Get PDF
    A sensitive and reproducible fully automated method for the determination of amino acids in plasma based on reversed-phase high-performance liquid chromatography and o-phthaldialdehyde pre-column derivatization is described. A 5-μm Spherisorb ODS 2 column (125 × 3 mm I.D.) was selected for routine determination. Over 40 physiological amino acids could be determined within 49 min (injection to injection) and 48 samples could be processed unattended. The coefficients of variation for most amino acids in plasma were below 4%. We were also able to measure trace amounts of amino acids in plasma normally not detected in a routine analysis. The results obtained with the method described compared favourably with those of conventional amino acid analysis (r = 0.997) and were in excellent agreement with those of other laboratories (r = 0.999)

    Causal connectivity of evolved neural networks during behavior

    Get PDF
    To show how causal interactions in neural dynamics are modulated by behavior, it is valuable to analyze these interactions without perturbing or lesioning the neural mechanism. This paper proposes a method, based on a graph-theoretic extension of vector autoregressive modeling and 'Granger causality,' for characterizing causal interactions generated within intact neural mechanisms. This method, called 'causal connectivity analysis' is illustrated via model neural networks optimized for controlling target fixation in a simulated head-eye system, in which the structure of the environment can be experimentally varied. Causal connectivity analysis of this model yields novel insights into neural mechanisms underlying sensorimotor coordination. In contrast to networks supporting comparatively simple behavior, networks supporting rich adaptive behavior show a higher density of causal interactions, as well as a stronger causal flow from sensory inputs to motor outputs. They also show different arrangements of 'causal sources' and 'causal sinks': nodes that differentially affect, or are affected by, the remainder of the network. Finally, analysis of causal connectivity can predict the functional consequences of network lesions. These results suggest that causal connectivity analysis may have useful applications in the analysis of neural dynamics
    corecore