7,875 research outputs found

    Permanent-magnet atom chips for the study of long, thin atom clouds

    Get PDF
    Atom-chip technology can be used to confine atoms tightly using permanently magnetised videotape along with external magnetic fields. The one-dimensional (1D) gas regime can be realised and studied by trapping the atoms in high-aspect-ratio traps in which the radial motion of the system is confined to zero-point oscillation

    Bose-Einstein Condensation on a Permanent-Magnet Atom Chip

    Full text link
    We have produced a Bose-Einstein condensate on a permanent-magnet atom chip based on periodically magnetized videotape. We observe the expansion and dynamics of the condensate in one of the microscopic waveguides close to the surface. The lifetime for atoms to remain trapped near this dielectric material is significantly longer than above a metal surface of the same thickness. These results illustrate the suitability of microscopic permanent-magnet structures for quantum-coherent preparation and manipulation of cold atoms.Comment: 4 pages, 6 figures, Published in Phys. Rev. A, Rapid Com

    Bose-Einstein Condensation on a Permanent-Magnet Atom Chip

    Full text link
    We have produced a Bose-Einstein condensate on a permanent-magnet atom chip based on periodically magnetized videotape. We observe the expansion and dynamics of the condensate in one of the microscopic waveguides close to the surface. The lifetime for atoms to remain trapped near this dielectric material is significantly longer than above a metal surface of the same thickness. These results illustrate the suitability of microscopic permanent-magnet structures for quantum-coherent preparation and manipulation of cold atoms.Comment: 4 pages, 6 figures, Published in Phys. Rev. A, Rapid Com

    Two-colour QCD at non-zero quark-number density

    Get PDF
    We have simulated two-colour four-flavour QCD at non-zero chemical potential μ\mu for quark number. Simulations were performed on 848^4 and 123×2412^3 \times 24 lattices. Clear evidence was seen for the formation of a colourless diquark condensate which breaks quark number spontaneously, for μ>μcmπ/2\mu > \mu_c \sim m_\pi/2. The transition appears to be second order. We have measured the spectrum of scalar and pseudoscalar bosons which shows clear evidence for the expected Goldstone boson. Our results are in qualitative agreement with those from effective Lagrangians for the potential Goldstone excitations of this theory.Comment: 22 pages RevTeX, 6 figures in 10 postscript file

    Semantic analysis of field sports video using a petri-net of audio-visual concepts

    Get PDF
    The most common approach to automatic summarisation and highlight detection in sports video is to train an automatic classifier to detect semantic highlights based on occurrences of low-level features such as action replays, excited commentators or changes in a scoreboard. We propose an alternative approach based on the detection of perception concepts (PCs) and the construction of Petri-Nets which can be used for both semantic description and event detection within sports videos. Low-level algorithms for the detection of perception concepts using visual, aural and motion characteristics are proposed, and a series of Petri-Nets composed of perception concepts is formally defined to describe video content. We call this a Perception Concept Network-Petri Net (PCN-PN) model. Using PCN-PNs, personalized high-level semantic descriptions of video highlights can be facilitated and queries on high-level semantics can be achieved. A particular strength of this framework is that we can easily build semantic detectors based on PCN-PNs to search within sports videos and locate interesting events. Experimental results based on recorded sports video data across three types of sports games (soccer, basketball and rugby), and each from multiple broadcasters, are used to illustrate the potential of this framework

    Simulations of a Scintillator Compton Gamma Imager for Safety and Security

    Full text link
    We are designing an all-scintillator Compton gamma imager for use in security investigations and remediation actions involving radioactive threat material. To satisfy requirements for a rugged and portable instrument, we have chosen solid scintillator for the active volumes of both the scatter and absorber detectors. Using the BEAMnrc/EGSnrc Monte Carlo simulation package, we have constructed models using four different materials for the scatter detector: LaBr_3, NaI, CaF_2 and PVT. We have compared the detector performances using angular resolution, efficiency, and image resolution. We find that while PVT provides worse performance than that of the detectors based entirely on inorganic scintillators, all of the materials investigated for the scatter detector have the potential to provide performance adequate for our purposes.Comment: Revised text and figures, Presented at SORMA West 2008, Published in IEEE Transactions on Nuclear Scienc

    3-D kinematic comparison of treadmill and overground running.

    Get PDF
    Studies investigating the mechanics of human movement are often conducted using the treadmill. The treadmill is an attractive device for the analysis of human locomotion. Studies comparing overground and treadmill running have analyzed discrete variables, however differences in excursion from footstrike to peak angle and range of motion during stance have yet to be examined. This study aimed to examine the 3-D kinematics of the lower extremities during overground and treadmill locomotion to determine the extent to which the two modalities differ. Twelve participants ran at 4.0m/s in both treadmill and overground conditions. 3-D angular kinematic parameters during the stance phase were collected using an eight camera motion analysis system. Hip, knee and ankle joint kinematics were quantified in the sagittal, coronal and transverse planes, then compared using paired t-tests. Of the parameters analyzed hip flexion at footstrike 12° hip range of motion 17°, peak hip flexion 12.7°, hip transverse plane range of motion 8° peak knee flexion 5° and peak ankle excursion range 6.6°, coronal plane ankle angle at toe-off 6.5° and peak ankle eversion 6.3° were found to be significantly different. These results lead to the conclusion that the mechanics of treadmill locomotion cannot be generalized to overground

    Doppler-free laser spectroscopy of buffer gas cooled molecular radicals

    Full text link
    We demonstrate Doppler-free saturated absorption spectroscopy of cold molecular radicals formed by laser ablation inside a cryogenic buffer gas cell. By lowering the temperature, congested regions of the spectrum can be simplified, and by using different temperatures for different regions of the spectrum a wide range of rotational states can be studied optimally. We use the technique to study the optical spectrum of YbF radicals with a resolution of 30 MHz, measuring the magnetic hyperfine parameters of the electronic ground state. The method is suitable for high resolution spectroscopy of a great variety of molecules at controlled temperature and pressure, and is particularly well-suited to those that are difficult to produce in the gas phase.Comment: 11 pages, 4 figure
    corecore