6,250 research outputs found

    Femtoscopy of the system shape fluctuations in heavy ion collisions

    Full text link
    Dipole, triangular, and higher harmonic flow that have an origin in the initial density fluctuations has gained a lot of attention as they can provide additional important information about the dynamical properties (e.g. viscosity) of the system. The fluctuations in the initial geometry should be also reflected in the detail shape and velocity field of the system at freeze-out. In this talk I discuss the possibility to measure such fluctuations by means of identical and non-identical particle interferometry.Comment: 4 pages, Proceedings of Quark Matter 2011 Conference, May 23 - May 28, Annecy, Franc

    Improving the Efficiency of an Ideal Heat Engine: The Quantum Afterburner

    Full text link
    By using a laser and maser in tandem, it is possible to obtain laser action in the hot exhaust gases involved in heat engine operation. Such a "quantum afterburner" involves the internal quantum states of working gas atoms or molecules as well as the techniques of cavity quantum electrodynamics and is therefore in the domain of quantum thermodynamics. As an example, it is shown that Otto cycle engine performance can be improved beyond that of the "ideal" Otto heat engine.Comment: 5 pages, 3 figure

    Deterministic reaction models with power-law forces

    Full text link
    We study a one-dimensional particles system, in the overdamped limit, where nearest particles attract with a force inversely proportional to a power of their distance and coalesce upon encounter. The detailed shape of the distribution function for the gap between neighbouring particles serves to discriminate between different laws of attraction. We develop an exact Fokker-Planck approach for the infinite hierarchy of distribution functions for multiple adjacent gaps and solve it exactly, at the mean-field level, where correlations are ignored. The crucial role of correlations and their effect on the gap distribution function is explored both numerically and analytically. Finally, we analyse a random input of particles, which results in a stationary state where the effect of correlations is largely diminished

    Possible Detection of Causality Violation in a Non-local Scalar Model

    Full text link
    We consider the possibility that there may be causality violation detectable at higher energies. We take a scalar nonlocal theory containing a mass scale Λ\Lambda as a model example and make a preliminary study of how the causality violation can be observed. We show how to formulate an observable whose detection would signal causality violation. We study the range of energies (relative to Λ\Lambda) and couplings to which the observable can be used.Comment: Latex, 30 page

    The ambivalent shadow of the pre-Wilsonian rise of international law

    Get PDF
    The generation of American international lawyers who founded the American Society of International Law in 1906 and nurtured the soil for what has been retrospectively called a “moralistic legalistic approach to international relations” remains little studied. A survey of the rise of international legal literature in the U.S. from the mid-19th century to the eve of the Great War serves as a backdrop to the examination of the boosting effect on international law of the Spanish American War in 1898. An examination of the Insular Cases before the US Supreme Court is then accompanied by the analysis of a number of influential factors behind the pre-war rise of international law in the U.S. The work concludes with an examination of the rise of natural law doctrines in international law during the interwar period and the critiques addressed.by the realist founders of the field of “international relations” to the “moralistic legalistic approach to international relation

    Understanding of the Renormalization Program in a mathematically Rigorous Framework and an Intrinsic Mass Scale

    Full text link
    we show there exists a mathematically consistent framework in which the Renormalization Program can be understood in a natural manner. The framework does not require any violations of mathematical rigor usually associated with the Renormalization program. We use the framework of the non-local field theories [these carry a finite mass scale (\Lambda)]and set up a finite perturbative program. We show how this program leads to the perturbation series of the usual renormalization program [except one difference] if the series is restructured .We further show that the comparison becomes possible if there exists a finite mass scale (\Lambda), with certain properties, in the Quantum Field theory [which we take to be the scale present in the nonlocal theory]. We give a way to estimate the scale (\Lambda). We also show that the finite perturbation program differs from the usual renormalization program by a term; which we propose can also be used to put a bound on (\Lambda).Comment: 19 pages, a missing equation added,a reference added and a few typos correcte

    Cognition-Enhancing Drugs: Can We Say No?

    Get PDF
    Normative analysis of cognition-enhancing drugs frequently weighs the liberty interests of drug users against egalitarian commitments to a level playing field. Yet those who would refuse to engage in neuroenhancement may well find their liberty to do so limited in a society where such drugs are widespread. To the extent that unvarnished emotional responses are world-disclosive, neurocosmetic practices also threaten to provide a form of faulty data to their users. This essay examines underappreciated liberty-based and epistemic rationales for regulating cognition-enhancing drugs

    Biot-Savart-like law in electrostatics

    Get PDF
    The Biot-Savart law is a well-known and powerful theoretical tool used to calculate magnetic fields due to currents in magnetostatics. We extend the range of applicability and the formal structure of the Biot-Savart law to electrostatics by deriving a Biot-Savart-like law suitable for calculating electric fields. We show that, under certain circumstances, the traditional Dirichlet problem can be mapped onto a much simpler Biot-Savart-like problem. We find an integral expression for the electric field due to an arbitrarily shaped, planar region kept at a fixed electric potential, in an otherwise grounded plane. As a by-product we present a very simple formula to compute the field produced in the plane defined by such a region. We illustrate the usefulness of our approach by calculating the electric field produced by planar regions of a few nontrivial shapes.Comment: 14 pages, 6 figures, RevTex, accepted for publication in the European Journal of Physic

    Noether symmetries for two-dimensional charged particle motion

    Full text link
    We find the Noether point symmetries for non-relativistic two-dimensional charged particle motion. These symmetries are composed of a quasi-invariance transformation, a time-dependent rotation and a time-dependent spatial translation. The associated electromagnetic field satisfy a system of first-order linear partial differential equations. This system is solved exactly, yielding three classes of electromagnetic fields compatible with Noether point symmetries. The corresponding Noether invariants are derived and interpreted

    Finite-temperature Screening and the Specific Heat of Doped Graphene Sheets

    Full text link
    At low energies, electrons in doped graphene sheets are described by a massless Dirac fermion Hamiltonian. In this work we present a semi-analytical expression for the dynamical density-density linear-response function of noninteracting massless Dirac fermions (the so-called "Lindhard" function) at finite temperature. This result is crucial to describe finite-temperature screening of interacting massless Dirac fermions within the Random Phase Approximation. In particular, we use it to make quantitative predictions for the specific heat and the compressibility of doped graphene sheets. We find that, at low temperatures, the specific heat has the usual normal-Fermi-liquid linear-in-temperature behavior, with a slope that is solely controlled by the renormalized quasiparticle velocity.Comment: 9 pages, 5 figures, Submitted to J. Phys.
    corecore