168 research outputs found

    CHD8 Regulates Neurodevelopmental Pathways Associated with Autism Spectrum Disorder in Neural Progenitors

    Get PDF
    Truncating mutations of chromodomain helicase DNA-binding protein 8 (CHD8), and of many other genes with diverse functions, are strong-effect risk factors for autism spectrum disorder (ASD), suggesting multiple mechanisms of pathogenesis. We explored the transcriptional networks that CHD8 regulates in neural progenitor cells (NPCs) by reducing its expression and then integrating transcriptome sequencing (RNA sequencing) with genome-wide CHD8 binding (ChIP sequencing). Suppressing CHD8 to levels comparable with the loss of a single allele caused altered expression of 1,756 genes, 64.9% of which were up-regulated. CHD8 showed widespread binding to chromatin, with 7,324 replicated sites that marked 5,658 genes. Integration of these data suggests that a limited array of direct regulatory effects of CHD8 produced a much larger network of secondary expression changes. Genes indirectly down-regulated (i.e., without CHD8-binding sites) reflect pathways involved in brain development, including synapse formation, neuron differentiation, cell adhesion, and axon guidance, whereas CHD8-bound genes are strongly associated with chromatin modification and transcriptional regulation. Genes associated with ASD were strongly enriched among indirectly down-regulated loci (P < 10[superscript −8]) and CHD8-bound genes (P = 0.0043), which align with previously identified coexpression modules during fetal development. We also find an intriguing enrichment of cancer-related gene sets among CHD8-bound genes (P < 10[superscript −10]). In vivo suppression of chd8 in zebrafish produced macrocephaly comparable to that of humans with inactivating mutations. These data indicate that heterozygous disruption of CHD8 precipitates a network of gene-expression changes involved in neurodevelopmental pathways in which many ASD-associated genes may converge on shared mechanisms of pathogenesis.Simons FoundationNancy Lurie Marks Family FoundationNational Institutes of Health (U.S.) (Grant MH095867)National Institutes of Health (U.S.) (Grant MH095088)National Institutes of Health (U.S.) (Grant GM061354)March of Dimes Birth Defects FoundationCharles H. Hood FoundationBrain & Behavior Research FoundationAutism Genetic Resource ExchangeAutism Speaks (Organization)Pitt–Hopkins Research Foundatio

    Evidence of exposure to SARS-CoV-2 in cats and dogs from households in Italy

    Get PDF
    SARS-CoV-2 emerged from animals and is now easily transmitted between people. Sporadic detection of natural cases in animals alongside successful experimental infections of pets, such as cats, ferrets and dogs, raises questions about the susceptibility of animals under natural conditions of pet ownership. Here, we report a large-scale study to assess SARS-CoV-2 infection in 919 companion animals living in northern Italy, sampled at a time of frequent human infection. No animals tested PCR positive. However, 3.3% of dogs and 5.8% of cats had measurable SARS-CoV-2 neutralizing antibody titers, with dogs from COVID-19 positive households being significantly more likely to test positive than those from COVID-19 negative households. Understanding risk factors associated with this and their potential to infect other species requires urgent investigation

    Sharing health-related data:A privacy test?

    Get PDF
    Greater sharing of potentially sensitive data raises important ethical, legal and social issues (ELSI), which risk hindering and even preventing useful data sharing if not properly addressed. One such important issue is respecting the privacy-related interests of individuals whose data are used in genomic research and clinical care. As part of the Global Alliance for Genomics and Health (GA4GH), we examined the ELSI status of health-related data that are typically considered ‘sensitive’ in international policy and data protection laws. We propose that ‘tiered protection’ of such data could be implemented in contexts such as that of the GA4GH Beacon Project to facilitate responsible data sharing. To this end, we discuss a Data Sharing Privacy Test developed to distinguish degrees of sensitivity within categories of data recognised as ‘sensitive’. Based on this, we propose guidance for determining the level of protection when sharing genomic and health-related data for the Beacon Project and in other international data sharing initiatives

    CAG repeat not polyglutamine length determines timing of Huntington’s disease onset

    Get PDF
    Variable, glutamine-encoding, CAA interruptions indicate that a property of the uninterrupted HTT CAG repeat sequence, distinct from the length of huntingtin’s polyglutamine segment, dictates the rate at which Huntington’s disease (HD) develops. The timing of onset shows no significant association with HTT cis-eQTLs but is influenced, sometimes in a sex-specific manner, by polymorphic variation at multiple DNA maintenance genes, suggesting that the special onset-determining property of the uninterrupted CAG repeat is a propensity for length instability that leads to its somatic expansion. Additional naturally occurring genetic modifier loci, defined by GWAS, may influence HD pathogenesis through other mechanisms. These findings have profound implications for the pathogenesis of HD and other repeat diseases and question the fundamental premise that polyglutamine length determines the rate of pathogenesis in the “polyglutamine disorders.

    Modification of Huntington's disease by short tandem repeats

    Get PDF
    Expansions of glutamine-coding CAG trinucleotide repeats cause a number of neurodegenerative diseases, including Huntington's disease (HD) and several of the spinocerebellar ataxias (SCAs). In general, age-at-onset of the polyglutamine diseases is inversely correlated with the size of the respective inherited expanded CAG repeat. Expanded CAG repeats are also somatically unstable in certain tissues, and age-at-onset of HD corrected for individual HTT CAG repeat length (i.e., residual age-at-onset), is modified by repeat instability-related DNA maintenance/repair genes as demonstrated by recent genome-wide association studies (GWAS). Modification of one polyglutamine disease (e.g., HD) by the repeat length of another (e.g., ATXN3, CAG expansions in which cause SCA3) has also been hypothesized. Consequently, we determined whether age-at-onset in HD is modified by the CAG repeats of other polyglutamine disease genes. We found that the CAG measured repeat sizes of other polyglutamine disease genes were polymorphic in HD participants but did not influence HD age-at-onset. Additional analysis focusing specifically on ATXN3 in a larger sample set (n = 1,388) confirmed the lack of association between HD residual age-at-onset and ATXN3 CAG repeat length. Additionally, neither our HD onset modifier GWAS single nucleotide polymorphism (SNP) data nor imputed short tandem repeat (STR) data supported involvement of other polyglutamine disease genes in modifying HD. By contrast, our GWAS based on imputed STRs revealed significant modification signals for other genomic regions. Together, our STR GWAS show that modification of HD is associated with STRs that do not involve other polyglutamine disease-causing genes, refining the landscape of HD modification and highlighting the importance of rigorous data analysis, especially in genetic studies testing candidate modifiers

    Pain and Frailty in Hospitalized Older Adults

    Get PDF
    Introduction: Pain and frailty are prevalent conditions in the older population. Many chronic diseases are likely involved in their origin, and both have a negative impact on quality of life. However, few studies have analysed their association. Methods: In light of this knowledge gap, 3577 acutely hospitalized patients 65&nbsp;years or older enrolled in the REPOSI register, an Italian network of internal medicine and geriatric hospital wards, were assessed to calculate the frailty index (FI). The impact of pain and some of its characteristics on the degree of frailty was evaluated using an ordinal logistic regression model after adjusting for age and gender. Results: The prevalence of pain was 24.7%, and among patients with pain, 42.9% was regarded as chronic pain. Chronic pain was associated with severe frailty (OR = 1.69, 95% CI 1.38–2.07). Somatic pain (OR = 1.59, 95% CI 1.23–2.07) and widespread pain (OR = 1.60, 95% CI 0.93–2.78) were associated with frailty. Osteoarthritis was the most common cause of chronic pain, diagnosed in 157 patients (33.5%). Polymyalgia, rheumatoid arthritis and other musculoskeletal diseases causing chronic pain were associated with a lower degree of frailty than osteoarthritis (OR = 0.49, 95%CI 0.28–0.85). Conclusions: Chronic and somatic pain negatively affect the degree of frailty. The duration and type of pain, as well as the underlying diseases associated with chronic pain, should be evaluated to improve the hospital management of frail older people
    • …
    corecore