3,159 research outputs found
Analysis of a parallelized nonlinear elliptic boundary value problem solver with application to reacting flows
A parallelized finite difference code based on the Newton method for systems of nonlinear elliptic boundary value problems in two dimensions is analyzed in terms of computational complexity and parallel efficiency. An approximate cost function depending on 15 dimensionless parameters is derived for algorithms based on stripwise and boxwise decompositions of the domain and a one-to-one assignment of the strip or box subdomains to processors. The sensitivity of the cost functions to the parameters is explored in regions of parameter space corresponding to model small-order systems with inexpensive function evaluations and also a coupled system of nineteen equations with very expensive function evaluations. The algorithm was implemented on the Intel Hypercube, and some experimental results for the model problems with stripwise decompositions are presented and compared with the theory. In the context of computational combustion problems, multiprocessors of either message-passing or shared-memory type may be employed with stripwise decompositions to realize speedup of O(n), where n is mesh resolution in one direction, for reasonable n
Domain-decomposed preconditionings for transport operators
The performance was tested of five different interface preconditionings for domain decomposed convection diffusion problems, including a novel one known as the spectral probe, while varying mesh parameters, Reynolds number, ratio of subdomain diffusion coefficients, and domain aspect ratio. The preconditioners are representative of the range of practically computable possibilities that have appeared in the domain decomposition literature for the treatment of nonoverlapping subdomains. It is shown that through a large number of numerical examples that no single preconditioner can be considered uniformly superior or uniformly inferior to the rest, but that knowledge of particulars, including the shape and strength of the convection, is important in selecting among them in a given problem
Potential energy landscape-based extended van der Waals equation
The inherent structures ({\it IS}) are the local minima of the potential
energy surface or landscape, , of an {\it N} atom system.
Stillinger has given an exact {\it IS} formulation of thermodynamics. Here the
implications for the equation of state are investigated. It is shown that the
van der Waals ({\it vdW}) equation, with density-dependent and
coefficients, holds on the high-temperature plateau of the averaged {\it IS}
energy. However, an additional ``landscape'' contribution to the pressure is
found at lower . The resulting extended {\it vdW} equation, unlike the
original, is capable of yielding a water-like density anomaly, flat isotherms
in the coexistence region {\it vs} {\it vdW} loops, and several other desirable
features. The plateau energy, the width of the distribution of {\it IS}, and
the ``top of the landscape'' temperature are simulated over a broad reduced
density range, , in the Lennard-Jones fluid. Fits to the
data yield an explicit equation of state, which is argued to be useful at high
density; it nevertheless reproduces the known values of and at the
critical point
Inherent-Structure Dynamics and Diffusion in Liquids
The self-diffusion constant D is expressed in terms of transitions among the
local minima of the potential (inherent structure, IS) and their correlations.
The formulae are evaluated and tested against simulation in the supercooled,
unit-density Lennard-Jones liquid. The approximation of uncorrelated
IS-transition (IST) vectors, D_{0}, greatly exceeds D in the upper temperature
range, but merges with simulation at reduced T ~ 0.50. Since uncorrelated IST
are associated with a hopping mechanism, the condition D ~ D_{0} provides a new
way to identify the crossover to hopping. The results suggest that theories of
diffusion in deeply supercooled liquids may be based on weakly correlated IST.Comment: submitted to PR
The Potential Energy Landscape and Mechanisms of Diffusion in Liquids
The mechanism of diffusion in supercooled liquids is investigated from the
potential energy landscape point of view, with emphasis on the crossover from
high- to low-T dynamics. Molecular dynamics simulations with a time dependent
mapping to the associated local mininum or inherent structure (IS) are
performed on unit-density Lennard-Jones (LJ). New dynamical quantities
introduced include r2_{is}(t), the mean-square displacement (MSD) within a
basin of attraction of an IS, R2(t), the MSD of the IS itself, and g_{loc}(t)
the mean waiting time in a cooperative region. At intermediate T, r2_{is}(t)
posesses an interval of linear t-dependence allowing calculation of an
intrabasin diffusion constant D_{is}. Near T_{c} diffusion is intrabasin
dominated with D = D_{is}. Below T_{c} the local waiting time tau_{loc} exceeds
the time, tau_{pl}, needed for the system to explore the basin, indicating the
action of barriers. The distinction between motion among the IS below T_{c} and
saddle, or border dynamics above T_{c} is discussed.Comment: submitted to pr
Instantaneous Normal Mode Analysis of Supercooled Water
We use the instantaneous normal mode approach to provide a description of the
local curvature of the potential energy surface of a model for water. We focus
on the region of the phase diagram in which the dynamics may be described by
the mode-coupling theory. We find, surprisingly, that the diffusion constant
depends mainly on the fraction of directions in configuration space connecting
different local minima, supporting the conjecture that the dynamics are
controlled by the geometric properties of configuration space. Furthermore, we
find an unexpected relation between the number of basins accessed in
equilibrium and the connectivity between them.Comment: 5 pages, 4 figure
Saddles in the energy landscape probed by supercooled liquids
We numerically investigate the supercooled dynamics of two simple model
liquids exploiting the partition of the multi-dimension configuration space in
basins of attraction of the stationary points (inherent saddles) of the
potential energy surface. We find that the inherent saddles order and potential
energy are well defined functions of the temperature T. Moreover, decreasing T,
the saddle order vanishes at the same temperature (T_MCT) where the inverse
diffusivity appears to diverge as a power law. This allows a topological
interpretation of T_MCT: it marks the transition from a dynamics between basins
of saddles (T>T_MCT) to a dynamics between basins of minima (T<T_MCT).Comment: 4 pages, 3 figures, to be published on PR
Mean-atom-trajectory model for the velocity autocorrelation function of monatomic liquids
We present a model for the motion of an average atom in a liquid or
supercooled liquid state and apply it to calculations of the velocity
autocorrelation function and diffusion coefficient . The model
trajectory consists of oscillations at a distribution of frequencies
characteristic of the normal modes of a single potential valley, interspersed
with position- and velocity-conserving transits to similar adjacent valleys.
The resulting predictions for and agree remarkably well with MD
simulations of Na at up to almost three times its melting temperature. Two
independent processes in the model relax velocity autocorrelations: (a)
dephasing due to the presence of many frequency components, which operates at
all temperatures but which produces no diffusion, and (b) the transit process,
which increases with increasing temperature and which produces diffusion.
Because the model provides a single-atom trajectory in real space and time,
including transits, it may be used to calculate all single-atom correlation
functions.Comment: LaTeX, 8 figs. This is an updated version of cond-mat/0002057 and
cond-mat/0002058 combined Minor changes made to coincide with published
versio
Quantum Ballistic Evolution in Quantum Mechanics: Application to Quantum Computers
Quantum computers are important examples of processes whose evolution can be
described in terms of iterations of single step operators or their adjoints.
Based on this, Hamiltonian evolution of processes with associated step
operators is investigated here. The main limitation of this paper is to
processes which evolve quantum ballistically, i.e. motion restricted to a
collection of nonintersecting or distinct paths on an arbitrary basis. The main
goal of this paper is proof of a theorem which gives necessary and sufficient
conditions that T must satisfy so that there exists a Hamiltonian description
of quantum ballistic evolution for the process, namely, that T is a partial
isometry and is orthogonality preserving and stable on some basis. Simple
examples of quantum ballistic evolution for quantum Turing machines with one
and with more than one type of elementary step are discussed. It is seen that
for nondeterministic machines the basis set can be quite complex with much
entanglement present. It is also proved that, given a step operator T for an
arbitrary deterministic quantum Turing machine, it is decidable if T is stable
and orthogonality preserving, and if quantum ballistic evolution is possible.
The proof fails if T is a step operator for a nondeterministic machine. It is
an open question if such a decision procedure exists for nondeterministic
machines. This problem does not occur in classical mechanics.Comment: 37 pages Latexwith 2 postscript figures tar+gzip+uuencoded, to be
published in Phys. Rev.
- …
