1,226 research outputs found

    Reflection High-Energy Electron-Diffraction Study of Surface Disorder and Anomalous Expansion of Pb(100)

    Get PDF
    The temperature-dependent surface structural behavior of Pb(100) is studied using reflection high-energy electron diffraction. Anomalous surface expansion for temperatures between room temperature to about 500 K is observed. A high density of surface vacancies appears at temperatures above ~ 500 K. © 1994 The American Physical Society

    Scanning-Tunneling-Microscopy Study of Pb on Si(111)

    Get PDF
    Scanning-tunneling microscopy has been used to study temperature and coverage dependence of the structure of lead on the Si(111)-7×7 surface. For low Pb coverage, the Pb atoms favored the faulted sites. The ratio between the number of Pb atoms on faulted to unfaulted sites increased after sample annealing. An energy difference of 0.05 eV associated with a Pb atom on these two sites is estimated. The mobility of Pb atoms on Si(111) was observed at a temperature as low as 260°C for a coverage of 0.1 and 1 ML. © 1995 The American Physical Society

    Hierarchically porous 3D-printed akermanite scaffolds from silicones and engineered fillers

    Get PDF
    The present investigation is dedicated to the manufacturing of reticulated three-dimensional akermanite scaffolds, developed by direct reaction between silica, from the oxidation of a commercial silicone resin and oxide fillers, forming pastes for direct ink writing. Crack-free scaffolds, with dense and regular struts, were due to the use of CaCO3 (micro) and MgO nano-particles as reactive fillers. An excellent phase purity was obtained, with the help of the liquid phase provided by anhydrous sodium borate (Na2B4O7), upon firing. The structure of the scaffolds, finally, was successfully modified by using Mg(OH)2 and hydrated sodium borate: besides macro-porosity from direct ink writing, the new scaffolds exhibited homogenous \u2018spongy\u2019 struts (owing to water vapor release in the heating step), with no crack. Both types of scaffolds (with dense or porous struts) exhibited remarkable strength-to-density ratios

    Functional bioglass/carbon nanocomposite scaffolds from vat photopolymerization of a novel preceramic polymer-based nanoemulsion

    Get PDF
    Silicone polymers are already known as feedstock for a variety of silicate bioceramics, in the form of scaffolds with complex shapes, obtained by Vat Photopolymerization. Printing is enabled by using silicone blended with photocurable acrylates. The development of a particular silicate composition that functions as a glass or glass-ceramic precursor is possible by the addition of suitable oxide fillers (especially carbonate powders), suspended in the polymer blend. Oxides, from the fillers, easily react with silica left by the thermal transformation of the silicone. The fillers, however, also determine complications in Vat Photopolymerization, due to light scattering; in addition, local oxide concentrations generally impede the obtainment of glassy products. The present paper illustrates a simple solution to these issues, based on the inclusion of a Ca salt in nano-emulsion within a silicone-containing blend. Homogeneous printed samples are later converted into crack-free, fully amorphous ceramic composites, by firing at only 700 °C. The glass matrix, resembling 70S30C (70 % SiO2 and 30 % CaO) bioglass, is achieved according to the quasi-molecular CaO distribution. The secondary phase, promoted by treatment in N2 atmosphere and consisting of pyrolytic carbon, provides a marked photothermal effect

    Advanced open-celled structures from low-temperature sintering of a crystallization-resistant bioactive glass

    Get PDF
    Most materials for bone tissue engineering are in form of highly porous open-celled components (porosity > 70%) developed by means of an adequate coupling of formulations and manufacturing technologies. This paper is dedicated to porous components from BGMS10 bioactive glass, originally designed to undergo viscous flow sintering without crystallization, which is generally known to degrade the bioactivity of 45S5 bioglass. The adopted manufacturing technologies were specifically conceived to avoid any contamination and give excellent control on the microstructures by simple operations. More precisely, 'green' components were obtained by digital light processing and direct foaming of glass powders suspended in a photosensitive organic binder or in an aqueous solution, activated with an organic base, respectively. Owing to characteristic quite large sintering window of BGMS10 glass, sintering at 750 \ub0C caused the consolidation of the structures generated at room temperature, without any evidence of viscous collapse

    Glass powders and reactive silicone binder: Interactions and application to additive manufacturing of bioactive glass-ceramic scaffolds

    Get PDF
    A novel concept for the additive manufacturing of three-dimensional glass-ceramic scaffolds, to be used for tissue engineering applications, was based on fine glass powders mixed with a reactive binder, in the form of a commercial silicone. The powders consisted of ‘silica-defective glass’ specifically designed to react, upon firing in air, with the amorphous silica yielded by the binder. By silica incorporation, the glass was intended to reach the composition of an already known CaONa2OB2O3SiO2 system. Silica from the binder provided up to 15 wt% of the total silica. With the same overall formulation, silicone-glass powder mixtures led to nearly the same phase assemblage formed by the reference system, crystallizing into wollastonite (CaSiO3) and Ca-borate (CaB2O4). Samples from silicone-glass powder mixtures exhibited an excellent shape retention after firing, which was later exploited in highly porous reticulated scaffolds, obtained by means of direct ink writing (DIW)

    Femtosecond Photoemission Study of Ultrafast Electron Dynamics in Single-Crystal Au(111) Films

    Get PDF
    The energy-dependent relaxation of photoexcited electrons has been measured by time-resolved two-photon photoemission spectroscopy on single-crystal Au(111) films with thickness ranging from 150 to 3000 Å. It is found that the energy-dependent relaxation does not show any significant thickness dependence, which indicates that electron transport is a much slower dynamical process in the near-surface region than expected from bulk properties. Furthermore, lifetimes of the photoexcited electrons can be fitted well by the Fermi-liquid theory with a scaling factor plus an effective upper lifetime. This observation enables separation of electron-electron scattering, and to a lesser extent electron-phonon scattering, processes from electron-transport effects on the surface dynamics. ©1998 American Physical Societ

    Femtosecond Photoemission Study of Ultrafast Electron Dynamics on Cu(100)

    Get PDF
    The energy dependence of the relaxation of photoexcited electrons in copper was measured using femtosecond time-resolved photoemission spectroscopy to within 0.3 eV above the Fermi level. By performing lifetime measurements under different surface conditions, several surface dynamical processes were investigated. In particular, an anomalous long lifetime feature, which cannot be explained with Fermi-liquid theory, was observed in the lifetime-energy curve. This feature was found originating from the photoexcitation of the strongly localized Cu 3d electrons. ©1997 American Physical Societ

    Statistical Optimization Approaches for High Cell Biomass Production of Lactobacillus casei

    Get PDF
    216-221Probiotic bacteria are known to treat and prevent diseases and hence promote physical and mental wellness due to their significant brain-gut relationship. The main challenge involved in probiotic commercialization is the bio processing limitation to produce high cell mass, especially with the cultivation of lactic acid bacteria which produces lactic acid as a by product. Synthesis of lactic acid by lactic acid bacteria inhibits bacterial growth, and in turn disrupts high cell mass production. Current work presents the findings for Lactobacillus casei medium optimization by response surface methodology in shake flask level. A simple medium using 4 components: lactose, soybean meal, yeast extract and magnesium sulphate has been identified to produce high cell mass than generic mediaused for probiotic cultivation, such as the MRS medium. Secondly, response surface methodology using Box-Behken Design was employed as an optimization strategy. After optimization process, the production of Lactobacillus casei biomass increased by about 164.6% recording 6.51g.L-1 compared to cell biomass obtained using initial un-optimized medium (2.46g.L-1)

    Multicharged Carbon Ion Generation from Laser Plasma

    Get PDF
    Carbon ions generated by ablation of a carbon target using an Nd:YAG laser pulse (wavelength λ = 1064 nm, pulse width τ = 7 ns, and laser fluence of 10-110 J cm-2) are characterized. Time-of-flight analyzer, a three-mesh retarding field analyzer, and an electrostatic ion energy analyzer are used to study the charge and energy of carbon ions generated by laser ablation. The dependencies of the ion signal on the laser fluence, laser focal point position relative to target surface, and the acceleration voltage are described. Up to C4+ ions are observed. When no acceleration voltage is applied between the carbon target and a grounded mesh in front of the target, ion energies up to ∼400 eV/charge are observed. The time-of-flight signal is analyzed for different retarding field voltages in order to obtain the ion kinetic energy distribution. The ablation and Coulomb energies developed in the laser plasma are obtained from deconvolution of the ion time-of-flight signal. Deconvolution of the time-of-flight ion signal to resolve the contribution of each ion charge is accomplished using data from a retarding field analysis combined with the time-of-flight signal. The ion energy and charge state increase with the laser fluence. The position of the laser focal spot affects the ion generation, with focusing ∼1.9 mm in front of the target surface yielding maximum ions. When an external electric field is applied in an ion drift region between the target and a grounded mesh parallel to the target, fast ions are extracted and separated, in time, due to increased acceleration with charge state. Published by AIP Publishing. [http://dx.doi.org/10.1063/1.4966987
    corecore