223 research outputs found

    Plant tissue extraction method for complexed and free cyanide

    Get PDF
    A method for free cyanide and strongly-complexed cyanide measurement within plant tissue was developed to study uptake and movement of cyanide species separately from cyanide metabolism and metabolite movement by a willow plant (Salix eriocephala var. Michaux). Spike recoveries from solutions with and without plant tissue, using various solvent combinations, and background control tissue contributions were investigated to obtain an accurate and precise extraction method for measurement of complexed and free cyanide concentrations within plant tissue. The optimum extraction technique involved the freezing of plant tissue with liquid nitrogen to facilitate homogenization prior to extraction. Homogenized willow tissue samples, 1 to 1.5 g-fresh weight, were ground a second time under liquid nitrogen followed by grinding in slurry with 2.5 M NaOH. The slurry was brought to 100 mL volume, sonicated for 5 min, extracted in the dark for 16 h, and analyzed without filtration for total and free cyanide by acid distillation and microdiffusion respectively. Sample tissue extraction controls found recoveries of 89% and 100% for 100 µg L-1 CNT as KCN and K4Fe(CN)6 spiked in willow tissue slurries. Methanol, hexane, and 2-octanol inclusion in the solvent matrix with 2.5 M NaOH interfered with the cyanide analytical technique while chloroform reacted with NaOH and free cyanide in solution. Filtration was not included due to increased cyanide loss, and analysis of control tissue showed minimal release of cyanide or interference of plant tissue with the cyanide analytical method.Tissue cyanide concentrations from hydroponicallyexposed tissue using the optimal extraction method agreed with tissue cyanide stable isotope (15N) results

    Plant Tissue Extraction Method for Complexed and Free Cyanide

    Full text link

    Mineralogical attenuation for metallic remediation in a passive system for mine water treatment

    Get PDF
    Passive systems with constructed wetlands have been consistently used to treat mine water from abandoned mines. Long-term and cost-effective remediation is a crucial expectation for these water treatment facilities. To achieve that, a complex chain of physical, chemical, biological, and mineralogical mechanisms for pollutants removal must be designed to simulate natural attenuation processes. This paper aims to present geochemical and mineralogical data obtained in a recently constructed passive system (from an abandoned mine, Jales, Northern Portugal). It shows the role of different solid materials in the retention of metals and arsenic, observed during the start-up period of the treatment plant. The mineralogical study focused on two types of materials: (1) the ochre-precipitates, formed as waste products from the neutralization process, and (2) the fine-grained minerals contained in the soil of the wetlands. The ochre-precipitates demonstrated to be poorly ordered iron-rich material, which gave rise to hematite upon artificial heating. The heating experiments also provided mineralogical evidence for the presence of an associated amorphous arsenic-rich compound. Chemical analysis on the freshly ochre-precipitates revealed high concentrations of arsenic (51,867 ppm) and metals, such as zinc (1,213 ppm) and manganese (821 ppm), indicating strong enrichment factors relative to the water from which they precipitate. Mineralogical data obtained in the soil of the wetlands indicate that chlorite, illite, chlorite–vermiculite and mica–vermiculite mixedlayers, vermiculite, kaolinite and goethite are concentrated in the fine-grained fractions (<20 and <2 μm). The chemical analyses show that high levels of arsenic (up to 3%) and metals are also retained in these fractions, which may be enhanced by the low degree of order of the clay minerals as suggested by an XRD study. The obtained results suggest that, although the treatment plant has been receiving water only since 2006, future performance will be strongly dependent on these identified mineralogical pollutant hosts.Fundação para a Ciência e a Tecnologia (FCT

    Changes in the nanoparticle aggregation rate due to the additional effect of electrostatic and magnetic forces on mass transport coefficients

    Get PDF
    The need may arise to be able to simulate the migration of groundwater nanoparticles through the ground. Transportation velocities of nanoparticles are different from that of water and depend on many processes that occur during migration. Unstable nanoparticles, such as zero-valent iron nanoparticles, are especially slowed down by aggregation between them. The aggregation occurs when attracting forces outweigh repulsive forces between the particles. In the case of iron nanoparticles that are used for remediation, magnetic forces between particles contribute to attractive forces and nanoparticles aggregate rapidly. This paper describes the addition of attractive magnetic forces and repulsive electrostatic forces between particles (by 'particle', we mean both single nanoparticles and created aggregates) into a basic model of aggregation which is commonly used. This model is created on the basis of the flow of particles in the proximity of observed particles that gives the rate of aggregation of the observed particle. By using a limit distance that has been described in our previous work, the flow of particles around one particle is observed in larger spacing between the particles. Attractive magnetic forces between particles draw the particles into closer proximity and result in aggregation. This model fits more closely with rapid aggregation which occurs between magnetic nanoparticles.Ministry of Education of the Czech Republic of the Technical University in Liberec [7822]; Ministry of Education of the Czech Republic [FR-TI1/456]; Ministry of Industry and Trad

    Seasonal variations in pore water and sediment geochemistry of littoral lake sediments (Asylum Lake, MI, USA)

    Get PDF
    BACKGROUND: Seasonal changes in pore water and sediment redox geochemistry have been observed in many near-surface sediments. Such changes have the potential to strongly influence trace metal distribution and thus create seasonal fluctuations in metal mobility and bioavailability. RESULTS: Seasonal trends in pore water and sediment geochemistry are assessed in the upper 50 cm of littoral kettle lake sediments. Pore waters are always redox stratified, with the least compressed redox stratification observed during fall and the most compressed redox stratification observed during summer. A 2-step sequential sediment extraction yields much more Fe in the first step, targeted at amorphous Fe(III) (hydr)oxides (AEF), then in the second step, which targets Fe(II) monosulfides. Fe extracted in the second step is relatively invariant with depth or season. In contrast, AEF decreases with sediment depth, and is seasonally variable, in agreement with changes in redox stratification inferred from pore water profiles. A 5-step Tessier extraction scheme was used to assess metal association with operationally-defined exchangeable, carbonate, iron and manganese oxide (FMO), organic/sulfide and microwave-digestible residual fractions in cores collected during winter and spring. Distribution of metals in these two seasons is similar. Co, As, Cd, and U concentrations approach detection limits. Fe, Cu and Pb are mostly associated with the organics/sulfides fraction. Cr and Zn are mostly associated with FMO. Mn is primarily associated with carbonates, and Co is nearly equally distributed between the FMO and organics/sulfide fractions. CONCLUSION: This study clearly demonstrates that near-surface lake sediment pore water redox stratification and associated solid phase geochemistry vary significantly with season. This has important ramifications for seasonal changes in the bioavailability and mobility of trace elements. Without rate measurements, it is not possible to quantify the contribution of various processes to natural organic matter degradation. However, the pore water and solid phase data suggest that iron reduction and sulfate reduction are the dominant pathways in the upper 50 cm of these sediments

    Field, Experimental, and Modeling Study of Arsenic Partitioning across a Redox Transition in a Bangladesh Aquifer

    Get PDF
    To understand redox-dependent arsenic partitioning, we performed batch sorption and desorption experiments using aquifer sands subjected to chemical and mineralogical characterization. Sands collected from the redox transition zone between reducing groundwater and oxic river water at the Meghna riverbank with HCl extractable Fe(III)/Fe ratio ranging from 0.32 to 0.74 are representative of the redox conditions of aquifers common in nature. One brown suboxic sediment displayed a partitioning coefficient (K_d) of 7-8 L kg^-1 at equilibrium with 100 μg L^-1 As(III), while two gray reducing sediments showed K_d of 1-2 L kg^-1. Lactate amendment to aquifer sands containing 91 mg kg^-1 P-extractable As resulted in the reduction of As and Fe with sediment Fe(III)/Fe decreasing from 0.54 to 0.44, and mobilized an equivalent of 64 mg kg^-1 As over a month. Desorption of As from nonlactate-amended sediment was negligible with little change in sediment Fe(III)/Fe. This release of As is consistent with microbial reduction of Fe(III) oxyhydroxides and the resulting decrease in the number of surface sites on Fe(III) oxyhydroxides. Arsenic partitioning (K_d) in iron-rich, sulfur-poor aquifers with circumneutral pH is redox-dependent and can be estimated by HCl leachable sediment Fe(III)/Fe ratio with typical Fe concentrations
    corecore