107 research outputs found

    Intractable policy failure: the case of bovine TB and badgers

    Get PDF
    The failure to eliminate bovine TB from the English and Welsh cattle herd represents a long-term intractable policy failure. Cattle-to-cattle transmission of the disease has been underemphasised in the debate compared with transmission from badgers despite a contested evidence base. Archival evidence shows that mythical constructions of the badger have shaped the policy debate. Relevant evidence was incomplete and contested; alternative framings of the policy problem were polarised and difficult to reconcile; and this rendered normal techniques of stakeholder management through co-option and mediation of little assistance

    Ecology good, aut-ecology better; Improving the sustainability of designed plantings

    Get PDF
    © 2015 European Council of Landscape Architecture Schools (ECLAS). This paper explores how contemporary ecological science, and aut-ecology in particular, can improve the sustainability of designed vegetation. It is proposed that ecological understanding can be applied to design at three levels: 1) as representation, 2) as process, and 3) as aut-ecology, representing a gradient from the least to the most profound. Key ecological interactions that determine the success of designed plantings are explored via a review of relevant ecological research, challenging some widely held but unhelpful constructs about how both semi-natural and designed vegetation actually function. The paper concludes that there are real benefits to integrating aut-ecological understanding in the design of vegetation at all scales but that this will require ecological theory to be taught as a design toolkit rather than largely as descriptive knowledge

    Nestedness of Ectoparasite-Vertebrate Host Networks

    Get PDF
    Determining the structure of ectoparasite-host networks will enable disease ecologists to better understand and predict the spread of vector-borne diseases. If these networks have consistent properties, then studying the structure of well-understood networks could lead to extrapolation of these properties to others, including those that support emerging pathogens. Borrowing a quantitative measure of network structure from studies of mutualistic relationships between plants and their pollinators, we analyzed 29 ectoparasite-vertebrate host networks—including three derived from molecular bloodmeal analysis of mosquito feeding patterns—using measures of nestedness to identify non-random interactions among species. We found significant nestedness in ectoparasite-vertebrate host lists for habitats ranging from tropical rainforests to polar environments. These networks showed non-random patterns of nesting, and did not differ significantly from published estimates of nestedness from mutualistic networks. Mutualistic and antagonistic networks appear to be organized similarly, with generalized ectoparasites interacting with hosts that attract many ectoparasites and more specialized ectoparasites usually interacting with these same “generalized” hosts. This finding has implications for understanding the network dynamics of vector-born pathogens. We suggest that nestedness (rather than random ectoparasite-host associations) can allow rapid transfer of pathogens throughout a network, and expand upon such concepts as the dilution effect, bridge vectors, and host switching in the context of nested ectoparasite-vertebrate host networks

    Arnhem Bay - Gove, Northern Territory : explanatory notes

    No full text

    Arnhem Bay - Gove, Northern Territory : explanatory notes

    No full text

    Determination of states of stress in hard rocks

    No full text
    corecore