19 research outputs found

    DISCUSSION AND PRACTICAL ASPECTS ON CONTROL ALLOCATION FOR A MULTI-ROTOR HELICOPTER

    No full text
    This paper presents practical methods to improve the flight performance of an unmanned multi-rotor helicopter by using an efficient control allocation strategy. The flying vehicle considered is an hexacopter. It is indeed particularly suited for long missions and for carrying a significant payload such as all the sensors needed in the context of cartography, photogrammetry, inspection, surveillance and transportation. Moreover, a stable flight is often required for precise data recording during the mission. Therefore, a high performance flight control system is required to operate the UAV. However, the flight performance of a multi-rotor vehicle is tightly dependent on the control allocation strategy that is used to map the virtual control vector v = [T, L, M, N ]T composed of the thrust and the torques in roll, pitch and yaw, respectively, to the propellers' speed. This paper shows that a control allocation strategy based on the classical approach of pseudo-inverse matrix only exploits a limited range of the vehicle capabilities to generate thrust and moments. Thus, in this paper, a novel approach is presented, which is based on a weighted pseudo-inverse matrix method capable of exploiting a much larger domain in v. The proposed control allocation algorithm is designed with explicit laws for fast operation and low computational load, suitable for a small microcontroller with limited floating-point operation capability

    From Topology to Quasi-Topology. The Complexity of the Notional Domain

    No full text
    This article examines a fundamental metalinguistic construction of the theory of enunciative operations: the notional domain. In particular, we try to explain some elementary topological concepts on which this construction is based and we try to show the key role they play in the description of some basic linguistic operations
    corecore