2,014 research outputs found
The rise of goods-market competition and the fall of nominal wage contracting: endogenous wage contracting in a multisector economy
This paper shows how heterogeneity wage-setting and a link between nominal wage flexibility andg goods-market competition rise in a multisector economy that is affected by aggregate and sector-specific shocks. Aggregate volatility increases the variance of real contract wages, whereas sectoral volatility increase the relative variance of real Walrasian wages. Given this tradeoff, the prevalence of nominal wage contracting reflects both the relative volatility of aggregate versus sectoral disturbances and the overall degree of goods-market market competition. We find that these variables help explain the decline in unionization (a proxy for contracting in) the United States.Markets ; Wages
Effects of post-translational modifications catalysed by pollen transglutaminase on the functional properties of microtubules and actin filaments
TGases (transglutaminases) are a class of calcium-dependent enzymes that catalyse the interactions between acyl acceptor glutamyl residues and amine donors, potentially making crosslinks between proteins. To assess the activity of apple (Malus domestica) pollen TGase on the functional properties of actin and tubulin, TGase was prepared from apple pollen by hydrophobic interaction chromatography and assayed on actin and tubulin purified from the same cell type. The enzyme catalysed the incorporation of putrescine in the cytoskeleton monomers. When tested on actin filaments, pollen TGase induced the formation of high-molecular-mass aggregates of actin. Use of fluorescein– cadaverine showed that the labelled polyamine was incorporated into actin by pollen TGase, similar to with guinea pig liver TGase. The pollen TGase also reduced the enzyme activity and the binding of myosin to TGase-treated actin filaments. Polymerization of tubulin in the presence of pollen TGase also yielded the formation of high molecular mass aggregates. Furthermore, the pollen TGase also affected the binding of kinesin to microtubules and reduced the motility of microtubules along kinesincoated slides. These results indicate that the pollen tube TGase can control different properties of the pollen tube cytoskeleton (including the ability of actin and tubulin to assemble and their interaction with motor proteins) and consequently regulate the development of pollen tubes
Higgs + 2 jets via gluon fusion
Real emission corrections to gg -> H, which lead to H+2 jet events, are
calculated at order alpha_s^4. Contributions include top-quark triangles, boxes
and pentagon diagrams and are evaluated analytically for arbitrary top mass
m_t. This new source of H+2 jet events is compared to the weak-boson fusion
cross section for a range of Higgs boson masses. The heavy top-mass
approximation appears to work well for intermediate Higgs-boson masses,
provided that the transverse momenta of the final-state partons are smaller
than the top-quark mass.Comment: 8 pages, 3 figure
Kinematical Limits on Higgs Boson Production via Gluon Fusion in Association with Jets
In this paper, we analyze the high-energy limits for Higgs boson plus two jet
production. We consider two high-energy limits, corresponding to two different
kinematic regions: a) the Higgs boson is centrally located in rapidity between
the two jets, and very far from either jet; b) the Higgs boson is close to one
jet in rapidity, and both of these are very far from the other jet. In both
cases the amplitudes factorize into impact factors or coefficient functions
connected by gluons exchanged in the t channel. Accordingly, we compute the
coefficient function for the production of a Higgs boson from two off-shell
gluons, and the impact factors for the production of a Higgs boson in
association with a gluon or a quark jet. We include the full top quark mass
dependence and compare this with the result obtained in the large top-mass
limit.Comment: 35 pages, 6 figure
Coherent States in Null-Plane Q.E.D
Light front field theories are known to have the usual infra-red divergences
of the equal time theories, as wellas new `spurious' infra-red divergences. The
formar kind of IR divergences are usually treated by giving a small mass to the
gauge particle. An alternative method to deal with these divergences is to
calculate the transition matrix elements in a coherent state basis. In this
paper we present, as a model calculation the lowest order correction to the
three point vertex in QED using a coherent state basis in the light cone
formalism. The relevant transition matrix element is shown to be free of the
true IR divergences up to .Comment: 20 pages and two figures, REVTEX, ITP-SB-93-7
Hopf algebras, coproducts and symbols: an application to Higgs boson amplitudes
We show how the Hopf algebra structure of multiple polylogarithms can be used
to simplify complicated expressions for multi-loop amplitudes in perturbative
quantum field theory and we argue that, unlike the recently popularized
symbol-based approach, the coproduct incorporates information about the zeta
values. We illustrate our approach by rewriting the two-loop helicity
amplitudes for a Higgs boson plus three gluons in a simplified and compact form
involving only classical polylogarithms.Comment: 46 page
Higgs boson production with one bottom quark jet at hadron colliders
We present total rates and kinematic distributions for the associated
production of a single bottom quark and a Higgs boson at the Tevatron and the
LHC. We include next-to-leading order QCD corrections and compare the results
obtained in the four and five flavor number schemes for parton distribution
functions.Comment: 4 pages, 8 figures, RevTeX
- …
