11,848 research outputs found

    Anomalous vortex ring velocities induced by thermally-excited Kelvin waves and counterflow effects in superfluids

    Full text link
    Dynamical counterflow effects on vortex evolution under the truncated Gross-Pitaevskii equation are investigated. Standard longitudinal mutual friction effects are produced and a dilatation of vortex rings is obtained at large counterflow. A strong temperature-dependent anomalous slowdown of vortex rings is observed and attributed to the presence of thermally exited Kelvin waves. This generic effect of finite-temperature superfluids is estimated using energy equipartition and orders of magnitude are given for weakly interacting Bose-Einstein condensates and superfluid 4He^4{\rm He}

    NIMBUS-7 SBUV (Solar Backscatter Ultraviolet) observations of solar UV spectral irradiance variations caused by solar rotation and active-region evolution for the period November 7, 1978 - November 1, 1980

    Get PDF
    Observations of temporal variations of the solar UV spectral irradiance over several days to a few weeks in the 160-400 nm wavelength range are presented. Larger 28-day variations and a second episode of 13-day variations occurred during the second year of measurements. The thirteen day periodicity is not a harmonic of the 28-day periodicity. The 13-day periodicity dominates certain episodes of solar activity while others are dominated by 28-day periods accompanied by a week 14-day harmonic. Techniques for removing noise and long-term trends are described. Time series analysis results are presented for the Si II lines near 182 nm, the Al I continuum in the 190 nm to 205 nm range, the Mg I continuum in the 210 nm to 250 nm range, the MgII H & K lines at 280 nm, the Mg I line at 285 nm, and the Ca II K & H lines at 393 and 397 nm

    Potential uses for bracken (Pteridium aquilinum (L.) Kuhn) in organic agrculture

    Get PDF
    Bracken is a weed species due to its toxic nature and adverse effects on agriculture and ecology. This poster reviews research into historical uses for fronds and litter harvested as part of organically approved control methods. The use of bracken as an over winter mulch reduced losses of nitrogen and potassium from bare soil and maintained soil temperatures. Bracken litter was found to be a viable biofuel, with a calorific value comparable to wood and low ash and alkali metal contents. The contents of frond ash were investigated, with high concentrations of potassium found giving them a value as organic fertiliser. The addition of frond ash to soil significantly increased clover growth and number of nodules. The addition of frond ash to soil significantly increased the yield of saleable main crop potatoes. These finding have shown that bracken has a value especially within organic agriculture

    Inelastic electron-nucleus scattering and scaling at high inelasticity

    Get PDF
    Highly inelastic electron scattering is analyzed within the context of the unified relativistic approach previously considered in the case of quasielastic kinematics. Inelastic relativistic Fermi gas modeling that includes the complete inelastic spectrum - resonant, non-resonant and Deep Inelastic Scattering - is elaborated and compared with experimental data. A phenomenological extension of the model based on direct fits to data is also introduced. Within both models, cross sections and response functions are evaluated and binding energy effects are analyzed. Finally, an investigation of the second-kind scaling behavior is also presented.Comment: 39 pages, 13 figures; formalism extended and slightly reorganized, conclusions extended; to appear in Phys. Rev.

    Dynamic Power Spectral Analysis of Solar Measurements from Photospheric, Chromospheric, and Coronal Sources

    Get PDF
    An important aspect in the power spectral analysis of solar variability is the quasistationary and quasiperiodic nature of solar periodicities. In other words, the frequency, phase, and amplitude of solar periodicities vary on time scales ranging from active region lifetimes to solar cycle time scales. Here, researchers employ a dynamic, or running, power spectral density analysis to determine many periodicities and their time-varying nature in the projected area of active sunspot groups (S sub act). The Solar Maximum Mission/Active Cavity Radiometer Irradiance Monitor (SMM/ACRIM) total solar irradiance (S), the Nimbus-7 MgII center-to-wing ratio (R (MgII sub c/w)), the Ottawa 10.7 cm flux (F sub 10.7), and the GOES background x ray flux (X sub b) for the maximum, descending, and minimum portions of solar cycle 21 (i.e., 1980 to 1986) are used. The technique dramatically illustrates several previously unrecognized periodicities. For example, a relatively stable period at about 51 days has been found in those indices which are related to emerging magnetic fields. The majority of solar periodicities, particularly around 27, 150 and 300 days, are quasiperiodic because they vary in amplitude and frequency throughout the solar cycle. Finally, it is shown that there are clear differences between the power spectral densities of solar measurements from photospheric, chromospheric, and coronal sources

    Energy Loss from Reconnection with a Vortex Mesh

    Full text link
    Experiments in superfluid 4He show that at low temperatures, energy dissipation from moving vortices is many orders of magnitude larger than expected from mutual friction. Here we investigate other mechanisms for energy loss by a computational study of a vortex that moves through and reconnects with a mesh of small vortices pinned to the container wall. We find that such reconnections enhance energy loss from the moving vortex by a factor of up to 100 beyond that with no mesh. The enhancement occurs through two different mechanisms, both involving the Kelvin oscillations generated along the vortex by the reconnections. At relatively high temperatures the Kelvin waves increase the vortex motion, leading to more energy loss through mutual friction. As the temperature decreases, the vortex oscillations generate additional reconnection events between the moving vortex and the wall, which decrease the energy of the moving vortex by transfering portions of its length to the pinned mesh on the wall.Comment: 9 pages, 10 figure

    Direct measurement of quantum phase gradients in superfluid 4He flow

    Full text link
    We report a new kind of experiment in which we generate a known superfluid velocity in a straight tube and directly determine the phase difference across the tube's ends using a superfluid matter wave interferometer. By so doing, we quantitatively verify the relation between the superfluid velocity and the phase gradient of the condensate macroscopic wave function. Within the systematic error of the measurement (~10%) we find v_s=(hbar/m_4)*(grad phi)

    Destroying superfluidity by rotating a Fermi gas at unitarity

    Full text link
    We study the effect of the rotation on a harmonically trapped Fermi gas at zero temperature under the assumption that vortices are not formed. We show that at unitarity the rotation produces a phase separation between a non rotating superfluid (S) core and a rigidly rotating normal (N) gas. The interface between the two phases is characterized by a density discontinuity nN/nS=0.85n_{\rm N}/n_{\rm S}= 0.85, independent of the angular velocity. The depletion of the superfluid and the angular momentum of the rotating configuration are calculated as a function of the angular velocity. The conditions of stability are also discussed and the critical angular velocity for the onset of a spontaneous quadrupole deformation of the interface is evaluated.Comment: 5 pages, 4 figures; comments added; 2 figures changed according to new results; inset Fig.2 corrected; accepted for publication in Phys. Rev. Let
    corecore