11,848 research outputs found
Anomalous vortex ring velocities induced by thermally-excited Kelvin waves and counterflow effects in superfluids
Dynamical counterflow effects on vortex evolution under the truncated
Gross-Pitaevskii equation are investigated. Standard longitudinal mutual
friction effects are produced and a dilatation of vortex rings is obtained at
large counterflow. A strong temperature-dependent anomalous slowdown of vortex
rings is observed and attributed to the presence of thermally exited Kelvin
waves. This generic effect of finite-temperature superfluids is estimated using
energy equipartition and orders of magnitude are given for weakly interacting
Bose-Einstein condensates and superfluid
NIMBUS-7 SBUV (Solar Backscatter Ultraviolet) observations of solar UV spectral irradiance variations caused by solar rotation and active-region evolution for the period November 7, 1978 - November 1, 1980
Observations of temporal variations of the solar UV spectral irradiance over several days to a few weeks in the 160-400 nm wavelength range are presented. Larger 28-day variations and a second episode of 13-day variations occurred during the second year of measurements. The thirteen day periodicity is not a harmonic of the 28-day periodicity. The 13-day periodicity dominates certain episodes of solar activity while others are dominated by 28-day periods accompanied by a week 14-day harmonic. Techniques for removing noise and long-term trends are described. Time series analysis results are presented for the Si II lines near 182 nm, the Al I continuum in the 190 nm to 205 nm range, the Mg I continuum in the 210 nm to 250 nm range, the MgII H & K lines at 280 nm, the Mg I line at 285 nm, and the Ca II K & H lines at 393 and 397 nm
Potential uses for bracken (Pteridium aquilinum (L.) Kuhn) in organic agrculture
Bracken is a weed species due to its toxic nature and adverse effects on agriculture and ecology. This poster reviews research into historical uses for fronds and litter harvested as part of organically approved control methods. The use of bracken as an over winter mulch reduced losses of nitrogen and potassium from bare soil and maintained soil temperatures. Bracken litter was found to be a viable biofuel, with a calorific value comparable to wood and low ash and alkali metal contents. The contents of frond ash were investigated, with high concentrations of potassium found giving them a value as organic fertiliser. The addition of frond ash to soil significantly increased clover growth and number of nodules. The addition of frond ash to soil significantly increased the yield of saleable main crop potatoes. These finding have shown that bracken has a value especially within organic agriculture
Inelastic electron-nucleus scattering and scaling at high inelasticity
Highly inelastic electron scattering is analyzed within the context of the
unified relativistic approach previously considered in the case of quasielastic
kinematics. Inelastic relativistic Fermi gas modeling that includes the
complete inelastic spectrum - resonant, non-resonant and Deep Inelastic
Scattering - is elaborated and compared with experimental data. A
phenomenological extension of the model based on direct fits to data is also
introduced. Within both models, cross sections and response functions are
evaluated and binding energy effects are analyzed. Finally, an investigation of
the second-kind scaling behavior is also presented.Comment: 39 pages, 13 figures; formalism extended and slightly reorganized,
conclusions extended; to appear in Phys. Rev.
Dynamic Power Spectral Analysis of Solar Measurements from Photospheric, Chromospheric, and Coronal Sources
An important aspect in the power spectral analysis of solar variability is the quasistationary and quasiperiodic nature of solar periodicities. In other words, the frequency, phase, and amplitude of solar periodicities vary on time scales ranging from active region lifetimes to solar cycle time scales. Here, researchers employ a dynamic, or running, power spectral density analysis to determine many periodicities and their time-varying nature in the projected area of active sunspot groups (S sub act). The Solar Maximum Mission/Active Cavity Radiometer Irradiance Monitor (SMM/ACRIM) total solar irradiance (S), the Nimbus-7 MgII center-to-wing ratio (R (MgII sub c/w)), the Ottawa 10.7 cm flux (F sub 10.7), and the GOES background x ray flux (X sub b) for the maximum, descending, and minimum portions of solar cycle 21 (i.e., 1980 to 1986) are used. The technique dramatically illustrates several previously unrecognized periodicities. For example, a relatively stable period at about 51 days has been found in those indices which are related to emerging magnetic fields. The majority of solar periodicities, particularly around 27, 150 and 300 days, are quasiperiodic because they vary in amplitude and frequency throughout the solar cycle. Finally, it is shown that there are clear differences between the power spectral densities of solar measurements from photospheric, chromospheric, and coronal sources
Energy Loss from Reconnection with a Vortex Mesh
Experiments in superfluid 4He show that at low temperatures, energy
dissipation from moving vortices is many orders of magnitude larger than
expected from mutual friction. Here we investigate other mechanisms for energy
loss by a computational study of a vortex that moves through and reconnects
with a mesh of small vortices pinned to the container wall. We find that such
reconnections enhance energy loss from the moving vortex by a factor of up to
100 beyond that with no mesh. The enhancement occurs through two different
mechanisms, both involving the Kelvin oscillations generated along the vortex
by the reconnections. At relatively high temperatures the Kelvin waves increase
the vortex motion, leading to more energy loss through mutual friction. As the
temperature decreases, the vortex oscillations generate additional reconnection
events between the moving vortex and the wall, which decrease the energy of the
moving vortex by transfering portions of its length to the pinned mesh on the
wall.Comment: 9 pages, 10 figure
Direct measurement of quantum phase gradients in superfluid 4He flow
We report a new kind of experiment in which we generate a known superfluid
velocity in a straight tube and directly determine the phase difference across
the tube's ends using a superfluid matter wave interferometer. By so doing, we
quantitatively verify the relation between the superfluid velocity and the
phase gradient of the condensate macroscopic wave function. Within the
systematic error of the measurement (~10%) we find v_s=(hbar/m_4)*(grad phi)
Destroying superfluidity by rotating a Fermi gas at unitarity
We study the effect of the rotation on a harmonically trapped Fermi gas at
zero temperature under the assumption that vortices are not formed. We show
that at unitarity the rotation produces a phase separation between a non
rotating superfluid (S) core and a rigidly rotating normal (N) gas. The
interface between the two phases is characterized by a density discontinuity
, independent of the angular velocity. The depletion
of the superfluid and the angular momentum of the rotating configuration are
calculated as a function of the angular velocity. The conditions of stability
are also discussed and the critical angular velocity for the onset of a
spontaneous quadrupole deformation of the interface is evaluated.Comment: 5 pages, 4 figures; comments added; 2 figures changed according to
new results; inset Fig.2 corrected; accepted for publication in Phys. Rev.
Let
- …
