55 research outputs found
Epidermal Growth Factor Receptor (EGFR) mutation analysis, gene expression profiling and EGFR protein expression in primary prostate cancer
<p>Abstract</p> <p>Background</p> <p>Activating mutations of the epidermal growth factor receptor (<it>EGFR</it>) confer sensitivity to the tyrosine kinase inhibitors (TKi), gefitinib and erlotinib. We analysed EGFR expression, EGFR mutation status and gene expression profiles of prostate cancer (PC) to supply a rationale for EGFR targeted therapies in this disease.</p> <p>Methods</p> <p>Mutational analysis of EGFR TK domain (exons from 18 to 21) and immunohistochemistry for EGFR were performed on tumour tissues derived from radical prostatectomy from 100 PC patients. Gene expression profiling using oligo-microarrays was also carried out in 51 of the PC samples.</p> <p>Results</p> <p>EGFR protein overexpression (EGFR<sub>high</sub>) was found in 36% of the tumour samples, and mutations were found in 13% of samples. Patients with EGFR<sub>high </sub>tumours experienced a significantly increased risk of biochemical relapse (hazard ratio-HR 2.52, p=0.02) compared with patients with tumours expressing low levels of EGFR (EGFR<sub>low</sub>). Microarray analysis did not reveal any differences in gene expression between EGFR<sub>high </sub>and EGFR<sub>low </sub>tumours. Conversely, in EGFR<sub>high </sub>tumours, we were able to identify a 79 gene signature distinguishing mutated from non-mutated tumours. Additionally, 29 genes were found to be differentially expressed between mutated/EGFR<sub>high </sub>(n=3) and mutated/EGFR<sub>low </sub>tumours (n=5). Four of the down-regulated genes, U19/EAF2, ABCC4, KLK3 and ANXA3 and one of the up-regulated genes, FOXC1, are involved in PC progression.</p> <p>Conclusions</p> <p>Based on our findings, we hypothesize that accurate definition of the EGFR status could improve prognostic stratification and we suggest a possible role for EGFR-directed therapies in PC patients. Having been generated in a relatively small sample of patients, our results warrant confirmation in larger series.</p
Sterological Analysis of the Epididymis of the Echidna, Tachyglossus aculeatus, and Wistar Rat
Characterization of nerve growth factor precursor protein expression in rat round spermatids and the trophic effects of nerve growth factor in the maintenance of Sertoli cell viability
PPARγ-independent induction of growth arrest and apoptosis in prostate and bladder carcinoma
Background Although PPARγ antagonists have shown considerable pre-clinical efficacy, recent studies suggest PPARγ ligands induce PPARγ-independent effects. There is a need to better define such effects to permit rational utilization of these agents. Methods We have studied the effects of a range of endogenous and synthetic PPARγ ligands on proliferation, growth arrest (FACS analysis) and apoptosis (caspase-3/7 activation and DNA fragmentation) in multiple prostate carcinoma cell lines (DU145, PC-3 and LNCaP) and in a series of cell lines modelling metastatic transitional cell carcinoma of the bladder (TSU-Pr1, TSU-Pr1-B1 and TSU-Pr1-B2). Results 15-deoxy-prostaglandin J2 (15dPGJ2), troglitazone (TGZ) and to a lesser extent ciglitazone exhibited inhibitory effects on cell number; the selective PPARγ antagonist GW9662 did not reverse these effects. Rosiglitazone and pioglitazone had no effect on proliferation. In addition, TGZ induced G0/G1 growth arrest whilst 15dPGJ2 induced apoptosis. Conclusion Troglitazone and 15dPGJ2 inhibit growth of prostate and bladder carcinoma cell lines through different mechanisms and the effects of both agents are PPARγ-independent
3,3'-Diindolylmethane Induction of p75NTR-Dependent Cell Death via the p38 Mitogen-Activated Protein Kinase Pathway in Prostate Cancer Cells
Epidermal growth factor promotes MDA-MB-231 breast cancer cell migration through a phosphatidylinositol 3'-kinase and phospholipase C-dependent mechanism
Epidermal growth factor receptor (EGFR) levels predict a poor outcome in human breast cancer and are most commonly associated with proliferative effects of epidermal growth factor (EGF), with little emphasis placed on motogenic responses to EGF. We found that MDA-MB-231 human breast cancer cells elicited a potent chemotactic response despite their complete lack of a proliferative response to EGF. Antagonists of EGFR ligation, the EGFR kinase, phosphatidylinositol 3'-kinase, and phospholipase C, but not the mitogen- activated protein kinases (extracellular signal-regulated protein kinase 1 and 2), blocked MDA-MB-231 chemotaxis. These findings suggest that EGF may influence human breast cancer progression via migratory pathways, the signaling for which appears to be dissociated, at least in part, from the proliferative pathways
- …
