118 research outputs found

    Cysteine transport through excitatory amino acid transporter 3 (EAAT3)

    Get PDF
    Excitatory amino acid transporters (EAATs) limit glutamatergic signaling and maintain extracellular glutamate concentrations below neurotoxic levels. Of the five known EAAT isoforms (EAATs 1-5), only the neuronal isoform, EAAT3 (EAAC1), can efficiently transport the uncharged amino acid L-cysteine. EAAT3-mediated cysteine transport has been proposed to be a primary mechanism used by neurons to obtain cysteine for the synthesis of glutathione, a key molecule in preventing oxidative stress and neuronal toxicity. The molecular mechanisms underlying the selective transport of cysteine by EAAT3 have not been elucidated. Here we propose that the transport of cysteine through EAAT3 requires formation of the thiolate form of cysteine in the binding site. Using Xenopus oocytes and HEK293 cells expressing EAAT2 and EAAT3, we assessed the transport kinetics of different substrates and measured transporter-associated currents electrophysiologically. Our results show that L-selenocysteine, a cysteine analog that forms a negatively-charged selenolate ion at physiological pH, is efficiently transported by EAATs 1-3 and has a much higher apparent affinity for transport when compared to cysteine. Using a membrane tethered GFP variant to monitor intracellular pH changes associated with transport activity, we observed that transport of either L-glutamate or L-selenocysteine by EAAT3 decreased intracellular pH, whereas transport of cysteine resulted in cytoplasmic alkalinization. No change in pH was observed when cysteine was applied to cells expressing EAAT2, which displays negligible transport of cysteine. Under conditions that favor release of intracellular substrates through EAAT3 we observed release of labeled intracellular glutamate but did not detect cysteine release. Our results support a model whereby cysteine transport through EAAT3 is facilitated through cysteine de-protonation and that once inside, the thiolate is rapidly re-protonated. Moreover, these findings suggest that cysteine transport is predominantly unidirectional and that reverse transport does not contribute to depletion of intracellular cysteine pools

    Design considerations to ensure accuracy when using the resazurin reduction assay to noninvasively quantify cell expansion within perfused extracellular matrix scaffolds

    Get PDF
    Analysis of perfusion-based bioreactors for organ engineering and a detailed evaluation of dynamic changes within maturing cell-laden scaffolds are critical components of ex vivo tissue development that remain understudied topics in the tissue and organ engineering literature. Precise measurement of cell numbers within bioartificial tissues and extracellular matrix scaffolds is necessary to provide measurement assurance and rigorous characterization of cell behavior within three-dimensional (3D) scaffolds. Accurate benchmarking of tissue function and biosynthetic activity to cell number facilitates comparison of data across experiments and between laboratories to increase rigor and reproducibility in tissue engineering and biofabrication. Soluble, fluorescent indicators of metabolic activity are valuable, noninvasive tools for estimating viable cell number. We investigated experimental conditions in which resazurin is a reliable indicator of cell content within 3D extracellular matrix kidney and liver scaffolds, and we present recommendations on experimental methodology for its optimal use. Resazurin is reduced to resorufin in proportion to metabolic activity of viable cells. Using three renal cell lines and one hepatic cell line, we show that correlation of viable cell number with the rate of resorufin generation may deviate from linearity at higher cell density, low resazurin working volumes, and/or longer incubation times – all of which contribute to depleting the working pool of resazurin. Importantly, we also show that the resazurin reduction rate in cell-conditioned medium is about double that in fresh culture medium. This finding has the potential to increase assay sensitivity, while saving expensive media. In conclusion, while the resazurin reduction assay provides a powerful, noninvasive readout for cell growth within extracellular matrix scaffolds, assay conditions may strongly influence its applicability for accurate quantification of cell number. The approach and recommendations developed in this study to maintain the pool of reducible resazurin may be used as a guide for application-specific optimization of the resazurin reduction assay to obtain accurate measurements of cell content in bioengineered tissues

    Regulation of pancreatic cancer cell migration and invasion by RhoC GTPase and Caveolin-1

    Full text link
    Abstract Background In the current study we investigated the role of caveolin-1 (cav-1) in pancreatic adenocarcinoma (PC) cell migration and invasion; initial steps in metastasis. Cav-1 is the major structural protein in caveolae; small Ω-shaped invaginations within the plasma membrane. Caveolae are involved in signal transduction, wherein cav-1 acts as a scaffolding protein to organize multiple molecular complexes regulating a variety of cellular events. Recent evidence suggests a role for cav-1 in promoting cancer cell migration, invasion and metastasis; however, the molecular mechanisms have not been described. The small monomeric GTPases are among several molecules which associate with cav-1. Classically, the Rho GTPases control actin cytoskeletal reorganization during cell migration and invasion. RhoC GTPase is overexpressed in aggressive cancers that metastasize and is the predominant GTPase in PC. Like several GTPases, RhoC contains a putative cav-1 binding motif. Results Analysis of 10 PC cell lines revealed high levels of cav-1 expression in lines derived from primary tumors and low expression in those derived from metastases. Comparison of the BxPC-3 (derived from a primary tumor) and HPAF-II (derived from a metastasis) demonstrates a reciprocal relationship between cav-1 expression and p42/p44 Erk activation with PC cell migration, invasion, RhoC GTPase and p38 MAPK activation. Furthermore, inhibition of RhoC or p38 activity in HPAF-II cells leads to partial restoration of cav-1 expression. Conclusion Cav-1 expression inhibits RhoC GTPase activation and subsequent activation of the p38 MAPK pathway in primary PC cells thus restricting migration and invasion. In contrast, loss of cav-1 expression leads to RhoC-mediated migration and invasion in metastatic PC cells.http://deepblue.lib.umich.edu/bitstream/2027.42/112733/1/12943_2005_Article_110.pd

    Initial multicenter experience with double nucleoside therapy for human immunodeficiency virus infection during pregnancy.

    Get PDF
    OBJECTIVE: To study maternal and neonatal effects of combination nucleoside analog therapy administered to human immunodeficiency virus (HIV)-infected pregnant women for maternal indications. METHODS: A multicenter, prospective observational study was undertaken at six perinatal centers in the United States and Canada that supported regional referral programs for the treatment of HIV-infected pregnant women. Demographic, laboratory, and pregnancy outcome data were collected for 39 women whose antiretroviral treatment regimens were expanded to include more than one nucleoside analog for maternal indications. The 40 newborns were monitored at pediatric referral centers through at least three months of age to ascertain their HIV infection status. RESULTS: For all 39 women, zidovudine (ZDV) therapy was instituted at 13.4 +/- 8.2 weeks, with a second agent (lamivudine [3TC] in 85% of cases) being added at a mean gestational age of 17.6 weeks. Duration of therapy with two agents was 20.6 +/- 10.4 weeks overall, with no women stopping medications because of side effects or toxicity. No significant changes in maternal laboratory values were seen, except for an increase in mean corpuscular volume, over the course of pregnancy. No clinically significant adverse neonatal outcomes were noted, with all but the three preterm newborns leaving hospital with their mothers. Neonatal anemia (hematocrit < 50%) was seen in 62% of newborns, with no children needing transfusion; mild elevations of liver function tests, primarily aspartate aminotransferase, were noted in 58% of newborns tested, though none were clinically jaundiced. Overall rate of neonatal HIV infection was 2.5% (95% confidence interval: 0.1-13.2%). CONCLUSION: Combination antiretroviral therapy during pregnancy with two nucleoside analogs was well-tolerated by mothers and newborns, with no significant short-term toxicities or side effects noted. Surveillance of exposed newborns' hematologic and liver function appears warranted

    An Uncommon Cause of Acute Abdominal Pain: Primary Epiploic Appendagitis in the Emergency Setting

    Get PDF
    In the emergency setting, the diagnosis of benign causes of acute abdominal pain can prevent unnecessary medical interventions. To illustrate this point, we report the case of a 28-year-old man who presented to the emer- gency department with symptoms suggestive of acute diverticulitis. Abdominal computed tomography (CT) established, instead, a diagnosis of primary epiploic appendagitis (PEA), which was managed expectantly. The patient’s symptoms resolved within one week of hospital discharge and he remained free of pain at a five-month phone follow-up. Increased awareness of PEA and its self-limited course can help the emergency physician avoid unnecessary imaging studies and expectantly manage this cause of acute abdominal pain.

    SJS/TEN 2019: From Science to Translation

    Get PDF
    Stevens-Johnson syndrome and toxic epidermal necrolysis (SJS/TEN) are potentially life-threatening, immune-mediated adverse reactions characterized by widespread erythema, epidermal necrosis, and detachment of skin and mucosa. Efforts to grow and develop functional international collaborations and a multidisciplinary interactive network focusing on SJS/TEN as an uncommon but high burden disease will be necessary to improve efforts in prevention, early diagnosis and improved acute and long-term management. SJS/TEN 2019: From Science to Translation was a 1.5-day scientific program held April 26-27, 2019, in Vancouver, Canada. The meeting successfully engaged clinicians, researchers, and patients and conducted many productive discussions on research and patient care needs

    In Situ-Targeting of Dendritic Cells with Donor-Derived Apoptotic Cells Restrains Indirect Allorecognition and Ameliorates Allograft Vasculopathy

    Get PDF
    Chronic allograft vasculopathy (CAV) is an atheromatous-like lesion that affects vessels of transplanted organs. It is a component of chronic rejection that conventional immuno-suppression fails to prevent, and is a major cause of graft loss. Indirect allo-recognition through T cells and allo-Abs are critical during CAV pathogenesis. We tested whether the indirect allo-response and its impact on CAV is down-regulated by in situ-delivery of donor Ags to recipient's dendritic cells (DCs) in lymphoid organs in a pro-tolerogenic fashion, through administration of donor splenocytes undergoing early apoptosis. Following systemic injection, donor apoptotic cells were internalized by splenic CD11chi CD8α+ and CD8− DCs, but not by CD11cint plasmacytoid DCs. Those DCs that phagocytosed apoptotic cells in vivo remained quiescent, resisted ex vivo-maturation, and presented allo-Ag for up to 3 days. Administration of donor apoptotic splenocytes, unlike cells alive, (i) promoted deletion, FoxP3 expression and IL-10 secretion, and decreased IFN-γ-release in indirect pathway CD4 T cells; and (ii) reduced cross-priming of anti-donor CD8 T cells in vivo. Targeting recipient's DCs with donor apoptotic cells reduced significantly CAV in a fully-mismatched aortic allograft model. The effect was donor specific, dependent on the physical characteristics of the apoptotic cells, and was associated to down-regulation of the indirect type-1 T cell allo-response and secretion of allo-Abs, when compared to recipients treated with donor cells alive or necrotic. Down-regulation of indirect allo-recognition through in situ-delivery of donor-Ag to recipient's quiescent DCs constitutes a promising strategy to prevent/ameliorate indirect allorecognition and CAV

    Herpes Simplex Virus-Induced Epithelial Damage and Susceptibility to Human Immunodeficiency Virus Type 1 Infection in Human Cervical Organ Culture

    Get PDF
    Normal human premenopausal cervical tissue has been used to derive primary cell populations and to establish ex vivo organ culture systems to study infections with herpes simplex virus (HSV-1 or HSV-2) and human immunodeficiency virus type 1 (HIV-1). Infection with either HSV-1 or HSV-2 rapidly induced multinuclear giant cell formation and widespread damage in mucosal epithelial cells. Subsequent exposure of the damaged mucosal surfaces to HIV-1 revealed frequent co-localization of HSV and HIV-1 antigens. The short-term organ culture system provides direct experimental support for the epidemiological findings that pre-existing sexually transmitted infections, including primary and recurrent herpes virus infections at mucosal surfaces, represent major risk factors for acquisition of primary HIV-1 infection. Epithelial damage in combination with pre-existing inflammation, as described here for overtly normal human premenopausal cervix, creates a highly susceptible environment for the initiation and establishment of primary HIV-1 infection in the sub-mucosa of the cervical transformation zone

    Apoptotic cell-based therapies against transplant rejection: role of recipient’s dendritic cells

    Get PDF
    One of the ultimate goals in transplantation is to develop novel therapeutic methods for induction of donor-specific tolerance to reduce the side effects caused by the generalized immunosuppression associated to the currently used pharmacologic regimens. Interaction or phagocytosis of cells in early apoptosis exerts potent anti-inflammatory and immunosuppressive effects on antigen (Ag)-presenting cells (APC) like dendritic cells (DC) and macrophages. This observation led to the idea that apoptotic cell-based therapies could be employed to deliver donor-Ag in combination with regulatory signals to recipient’s APC as therapeutic approach to restrain the anti-donor response. This review describes the multiple mechanisms by which apoptotic cells down-modulate the immuno-stimulatory and pro-inflammatory functions of DC and macrophages, and the role of the interaction between apoptotic cells and APC in self-tolerance and in apoptotic cell-based therapies to prevent/treat allograft rejection and graft-versus-host disease in murine experimental systems and in humans. It also explores the role that in vivo-generated apoptotic cells could have in the beneficial effects of extracorporeal photopheresis, donor-specific transfusion, and tolerogenic DC-based therapies in transplantation

    HIV interactions with monocytes and dendritic cells: viral latency and reservoirs

    Get PDF
    HIV is a devastating human pathogen that causes serious immunological diseases in humans around the world. The virus is able to remain latent in an infected host for many years, allowing for the long-term survival of the virus and inevitably prolonging the infection process. The location and mechanisms of HIV latency are under investigation and remain important topics in the study of viral pathogenesis. Given that HIV is a blood-borne pathogen, a number of cell types have been proposed to be the sites of latency, including resting memory CD4+ T cells, peripheral blood monocytes, dendritic cells and macrophages in the lymph nodes, and haematopoietic stem cells in the bone marrow. This review updates the latest advances in the study of HIV interactions with monocytes and dendritic cells, and highlights the potential role of these cells as viral reservoirs and the effects of the HIV-host-cell interactions on viral pathogenesis
    corecore