141 research outputs found

    Solar radiation climatology of Alaska

    Get PDF
    Summary There are only six locations in Alaska for which global radiation data of more than a year in duration are available. This is an extremely sparse coverage for a state which covers 1.5Â10 6 km 2 and stretches over at least three climatic zones. Cloud observations are, however, available from 18 stations. We used fractional cloud cover and cloud type data to model the global radiation and thus obtain a more complete radiation coverage for Alaska. This extended data set allowed an analysis of geographic and seasonal trends. A simple 1-layer model based on Haurwitz's semiempirical approach, allowing for changes in cloud type and fractional coverage, was developed. The model predicts the annual global radiation¯uxes to within 2±11% of the observed values. Estimated monthly mean values gave an average accuracy within about 6% of the measurements. The estimates agree well with the observations during the ®rst four months of the year but less so for the last four. Changing surface albedo might explain this deviation. Previously, the 1993 National Solar Radiation Data Base (NSRDB) from the National Renewable Energy Laboratory (NREL) modeled global radiation data for 16 Alaskan stations. Although more complete and complex, the NREL model requires a larger number of input parameters, which are not available for Alaska. Hence, we believe that our model, which is based on cloud-radiation relationship and is speci®cally tuned to Alaskan conditions, produces better results for this region. Annual global solar radiation¯ux measurements are compared with results from global coverage models based on the International Satellite Cloud Climatology Project (ISCCP) data. Contour plots of seasonal and mean annual spatial distribution of global radiation for Alaska are presented and discussed in the context of their climatic and geographic settings

    An Intelligent Decision Support System for the Detection of Meat Spoilage using Multispectral Images

    Get PDF
    In food industry, quality and safety are considered important issues worldwide that are directly related to health and social progress. The use of vision technology for quality testing of food production has the obvious advantage of being able to continuously monitor a production using non-destructive methods, thus increasing the quality and minimizing cost. The performance of an intelligent decision support system has been evaluated in monitoring the spoilage of minced beef stored either aerobically or under modified atmosphere packaging, at different storage temperatures (0, 5, 10, and 15 °C) utilising multispectral imaging information. This paper utilises a neuro-fuzzy model which incorporates a clustering pre-processing stage for the definition of fuzzy rules, while its final fuzzy rule base is determined by competitive learning. Initially, meat samples are classified according to their storage conditions, while identification models are then utilised for the prediction of the Total Viable Counts of bacteria. The innovation of the proposed approach is further extended to the identification of the temperature used for storage, utilizing only imaging spectral information. Results indicated that spectral information in combination with the proposed modelling scheme could be considered as an alternative methodology for the accurate evaluation of meat spoilage

    Determining specific biomass activity in anaerobic wastewater treatment processes

    Get PDF
    «Erworben im Rahmen der Schweizer Nationallizenzen (http://www.nationallizenzen.ch)»An experimental method for the measurement of specific gas production rate was developed and tested with biomass samples taken from anaerobic fluidized bed reactors, operating with a variety of carriers with molasses, condensate from cellulose production and brewery wastewater as feeds. The method is based on reactor sampling and offline gas volume measurement during a known time interval. Important factors are biomass and liquid sampling under oxygen-free conditions, using the liquid from the reactor as substrate, providing sufficient mixing and maintaining the physical integrity of the biomass. The method was developed in such a way that small samples (20 ml) were taken under anaerobic conditions (poising agent) for short-term (2-3 min.) gas rate measurements in a small fluidized bed (25 ml) batch reactor with U-tube. Biomass content was measured by an instrumental nitrogen method (Dumas), followed by weight determination of the carrier. The gas rates measured with the test system, and their dependence on substrate concentration, were in good agreement with those directly measured from the continuous fluidized bed reactor. Additions of molasses and acetate to the sample proved that the influence of concentration on the biomass activity can be obtained only by operating the continuous reactor at the concentration levels of interest. Comparison between the reactors showed large differences in the specific activity and the total reactor activity. It was found when comparing two reactors, that the values of the specific and the total activities permitted the calculation of the relative biomass quantities. In this way the influence of the carrier-type could be evaluated

    Analysis of Signaling Mechanisms Regulating Microglial Process Movement

    Get PDF
    Microglia, the brain’s innate immune cells, are extremely motile cells, continuously surveying the CNS to serve homeostatic functions and to respond to pathological events. In the healthy brain, microglia exhibit a small cell body with long, branched and highly motile processes, which constantly extend and retract, effectively ‘patrolling’ the brain parenchyma. Over the last decade, methodological advances in microscopy and the availability of genetically encoded reporter mice have allowed us to probe microglial physiology in situ. Beyond their classical immunological roles, unexpected functions of microglia have been revealed, both in the developing and the adult brain: microglia regulate the generation of newborn neurons, control the formation and elimination of synapses, and modulate neuronal activity. Many of these newly ascribed functions depend directly on microglial process movement. Thus, elucidating the mechanisms underlying microglial motility is of great importance to understand their role in brain physiology and pathophysiology. Two-photon imaging of fluorescently labelled microglia, either in vivo or ex vivo in acute brain slices, has emerged as an indispensable tool for investigating microglial movements and their functional consequences. This chapter aims to provide a detailed description of the experimental data acquisition and analysis needed to address these questions, with a special focus on key dynamic and morphological metrics such as surveillance, directed motility and ramification

    Mobile encounters:bus 5A as a cross-cultural meeting place

    Get PDF
    The paper explores modes of encounters in the everyday practice of bus travel. Particularly, it addresses cross-cultural encounters located in the tension between familiarity and difference, between inclusion and exclusion. The paper is located in contemporary thoughts, approaching public transport not only as a moving device but also as a social arena. Furthermore, the bus is simultaneously perceived as a public space, at once composite, contradictory and heterogeneous, and as a meeting place involving ‘Throwntogetherness’. The encounters analysed are bodily, emotional charged and outspoken meetings between passengers, with the socio-materiality of the bus and drivers as co-riders and gatekeepers

    The Spider Effect: Morphological and Orienting Classification of Microglia in Response to Stimuli in Vivo

    Get PDF
    The different morphological stages of microglial activation have not yet been described in detail. We transected the olfactory bulb of rats and examined the activation of the microglial system histologically. Six stages of bidirectional microglial activation (A) and deactivation (R) were observed: from stage 1A to 6A, the cell body size increased, the cell process number decreased, and the cell processes retracted and thickened, orienting toward the direction of the injury site; until stage 6A, when all processes disappeared. In contrast, in deactivation stages 6R to 1R, the microglia returned to the original site exhibiting a stepwise retransformation to the original morphology. Thin highly branched processes re-formed in stage 1R, similar to those in stage 1A. This reverse transformation mirrored the forward transformation except in stages 6R to 1R: cells showed multiple nuclei which were slowly absorbed. Our findings support a morphologically defined stepwise activation and deactivation of microglia cells

    Genetic Diversity among Ancient Nordic Populations

    Get PDF
    Using established criteria for work with fossil DNA we have analysed mitochondrial DNA from 92 individuals from 18 locations in Denmark ranging in time from the Mesolithic to the Medieval Age. Unequivocal assignment of mtDNA haplotypes was possible for 56 of the ancient individuals; however, the success rate varied substantially between sites; the highest rates were obtained with untouched, freshly excavated material, whereas heavy handling, archeological preservation and storage for many years influenced the ability to obtain authentic endogenic DNA. While the nucleotide diversity at two locations was similar to that among extant Danes, the diversity at four sites was considerably higher. This supports previous observations for ancient Britons. The overall occurrence of haplogroups did not deviate from extant Scandinavians, however, haplogroup I was significantly more frequent among the ancient Danes (average 13%) than among extant Danes and Scandinavians (∼2.5%) as well as among other ancient population samples reported. Haplogroup I could therefore have been an ancient Southern Scandinavian type “diluted” by later immigration events. Interestingly, the two Neolithic samples (4,200 YBP, Bell Beaker culture) that were typed were haplogroup U4 and U5a, respectively, and the single Bronze Age sample (3,300–3,500 YBP) was haplogroup U4. These two haplogroups have been associated with the Mesolithic populations of Central and Northern Europe. Therefore, at least for Southern Scandinavia, our findings do not support a possible replacement of a haplogroup U dominated hunter-gatherer population by a more haplogroup diverse Neolithic Culture

    Mitochondrial DNA Evidence for a Diversified Origin of Workers Building Mausoleum for First Emperor of China

    Get PDF
    Variant studies on ancient DNA have attempted to reveal individual origin. Here, based on cloning sequencing and polymerase chain reaction-restriction fragment length polymorphisms, we analyzed polymorphisms in the first hypervariable region and coding regions of mitochondrial DNA of 19 human bone remains which were excavated from a tomb near the Terra Cotta Warriors and dated some 2,200 years before present. With the aim of shedding light on origins of these samples who were supposed to be workers building the mausoleum for the First Emperor of China, we compared them with 2,164 mtDNA profiles from 32 contemporary Chinese populations at both population and individual levels. Our results showed that mausoleum-building workers may be derived from very diverse sources of origin
    corecore