1,846 research outputs found

    Radiative corrections to e+e- --> WW --> 4f with RACOONWW

    Full text link
    RACOONWW is the first Monte Carlo generator for e+e- --> WW --> 4f(+gamma) that includes the electroweak O(alpha) radiative corrections in the double-pole approximation completely. Some numerical results for LEP2 energies are discussed, and the predictions for the total W-pair cross section are confronted with LEP2 data.Comment: 7 pages, latex, 5 postscript files, to appear in the Proceedings of the 5th Zeuthen Workshop on Elementary Particle Theory ``Loops and Legs in Quantum Field Theory'', Bastei/Koenigstein, Germany, April 9-14, 200

    Four-fermion production with RACOONWW

    Get PDF
    RACOONWW is an event generator for e+e- --> WW --> 4fermions(+gamma) that includes full tree-level predictions for e+e- --> 4f and e+e- --> 4f+gamma as well as O(alpha) corrections to e+e- --> 4f in the so-called double-pole approximation. We briefly sketch the concept of the calculation on which this generator is based and present some numerical results.Comment: 9 pages, latex, 6 postscript files, to appear in the proceedings of the UK Phenomenology Workshop on Collider Physics, Durham, UK, 19-24 September, 199

    Electroweak Radiative Corrections to Off-Shell W-Pair Production

    Get PDF
    We briefly describe the RacoonWW approach to calculate radiative corrections to e+ e- -> W W -> 4 fermions and present numerical results for the total W-pair production cross section at LEP2.Comment: 3 pages, 2 figures, talk given at the DPF2000 meeting, Columbus, OH, August 9-12, 200

    RacoonWW1.3: A Monte Carlo program for four-fermion production at e^+ e^- colliders

    Get PDF
    We present the Monte Carlo generator RacoonWW that computes cross sections to all processes e^+ e^- -> 4f and e^+ e^- -> 4f + gamma and calculates the complete O(alpha) electroweak radiative corrections to e^+ e^- -> W W -> 4f in the electroweak Standard Model in double-pole approximation. The calculation of the tree-level processes e^+ e^- -> 4f and e^+ e^- -> 4f + gamma is based on the full matrix elements for massless (polarized) fermions. When calculating radiative corrections to e^+ e^- -> W W -> 4f the complete virtual doubly-resonant electroweak corrections are included, i.e. the factorizable and non-factorizable virtual corrections in double-pole approximation, and the real corrections are based on the full matrix elements for e^+ e^- -> 4f + gamma. The matching of soft and collinear singularities between virtual and real corrections is done alternatively in two different ways, namely by using a subtraction method or by applying phase-space slicing. Higher-order initial-state photon radiation and naive QCD corrections are taken into account. RacoonWW also provides anomalous triple gauge-boson couplings for all processes e^+ e^- -> 4f and anomalous quartic gauge-boson couplings for all processes e^+ e^- -> 4f + gamma.Comment: 62 pages, LaTeX, elsart styl

    Probing anomalous quartic gauge-boson couplings via e+e- --> 4fermions+gamma

    Full text link
    All lowest-order amplitudes for e+e- --> 4f+gamma are calculated including five anomalous quartic gauge-boson couplings that are allowed by electromagnetic gauge invariance and the custodial SU(2)_c symmetry. Three of these anomalous couplings correspond to the operators L_0, L_c, and L_n that have been constrained by the LEP collaborations in WWgamma production. The anomalous couplings are incorporated in the Monte Carlo generator RACOONWW. Moreover, for the processes e+e- --> 4f+gamma RACOONWW is improved upon including leading universal electroweak corrections such as initial-state radiation. The discussion of numerical results illustrates the size of the leading corrections as well as the impact of the anomalous quartic couplings for LEP2 energies and at 500GeV.Comment: 27 pages, latex, 42 postscript files, some misprints correcte

    W-pair production at future e+e- colliders: precise predictions from RACOONWW

    Get PDF
    We present numerical results for total cross sections and various distributions for e+e- --> WW --> 4f(+gamma) at a future 500GeV linear collider, obtained from the Monte Carlo generator RACOONWW. This generator is the first one that includes O(alpha) electroweak radiative corrections in the double-pole approximation completely. Owing to their large size the corrections are of great phenomenological importance.Comment: 11 pages, latex, 10 postscript file

    Electroweak and QCD corrections to Higgs production via vector-boson fusion at the LHC

    Full text link
    The radiative corrections of the strong and electroweak interactions are calculated at next-to-leading order for Higgs-boson production in the weak-boson-fusion channel at hadron colliders. Specifically, the calculation includes all weak-boson fusion and quark--antiquark annihilation diagrams to Higgs-boson production in association with two hard jets, including all corresponding interferences. The results on the QCD corrections confirm that previously made approximations of neglecting s-channel diagrams and interferences are well suited for predictions of Higgs production with dedicated vector-boson fusion cuts at the LHC. The electroweak corrections, which also include real corrections from incoming photons and leading heavy-Higgs-boson effects at two-loop order, are of the same size as the QCD corrections, viz. typically at the level of 5-10% for a Higgs-boson mass up to \sim 700 GeV. In general, both types of corrections do not simply rescale differential distributions, but induce distortions at the level of 10%. The discussed corrections have been implemented in a flexible Monte Carlo event generator.Comment: 33 pages, LaTeX, 24 postscript figure

    Electroweak corrections to Higgs-strahlung off W/Z bosons at the Tevatron and the LHC with HAWK

    Full text link
    The associate production of Higgs bosons with W or Z bosons, known as Higgs-strahlung, is an important search channel for Higgs bosons at the hadron colliders Tevatron and LHC for low Higgs-boson masses. We refine a previous calculation of next-to-leading-order electroweak corrections (and recalculate the QCD corrections) upon including the leptonic decay of the W/Z bosons, thereby keeping the fully differential information of the 2-lepton + Higgs final state. The gauge invariance of the W/Z-resonance treatment is ensured by the use of the complex-mass scheme. The electroweak corrections, which are at the level of -(5-10)% for total cross sections, further increase in size with increasing transverse momenta p_T in differential cross sections. For instance, for p_T,H >~ 200GeV, which is the interesting range at the LHC, the electroweak corrections to WH production reach about -14% for M_H = 120GeV. The described corrections are implemented in the HAWK Monte Carlo program, which was initially designed for the vector-boson-fusion channel, and are discussed for various distributions in the production channels pp / p \bar p -> H + l nu_l / l^-l^+ / nu_l \bar nu_l + X.Comment: 22 p
    corecore