8 research outputs found

    Drought tolerance induced by the overexpression of the nuclear rbcL gene in rice.

    Get PDF
    The objective of this work was to determine whether the overexpression of the nuclear Rubisco large subunit (rbcL) improves the drought tolerance of the genetically modified (GM) BRSMG Curinga upland rice (Oryza sativa) cultivar. GM and non-genetically modified (NGM) plants of the same cultivar were compared under the two following water treatments: well watered (WW) and water deficit (WD). The performance of the agronomic traits of GM plants, including grain yield, was superior to that of NGM plants in both treatments. By quantitative polymerase chain reaction, GM plants show a significantly higher expression of the rbcL gene in both WW and WD, as well as a larger amount of abscisic acid. With the RNAseq analysis, almost three times more upregulated genes are identified in GM plants in stage 2 after water restriction, indicating a greater protection against water deficit. The higher expression of genes related to the protection of the cellular metabolism and a series of physiological alterations may be involved in the increase in the drought tolerance of GM rice plants overexpressing the rbcL gene

    controlling the disease

    Get PDF
    Surveillance and outbreak reports Surveillance of extensively drug-resistant tuberculosis in Europe, 2003-2007 15 by I Devaux, D Manissero, K Fernandez de la Hoz, K Kremer, D van Soolingen, on behalf of the EuroTB network Analysis of tuberculosis treatment outcomes in the European Union and European Economic Area: efforts needed towards optimal case management and control 21 by D Manissero, V Hollo, E Huitric, C Ködmön, A Amato-Gauci Risk of developing tuberculosis from a school contact: retrospective cohort study

    A milestone in the doubled haploid pathway of cassava

    Get PDF
    This study was aimed at inducing androgenesis in cultured anthers of cassava (Manihot esculenta Crantz) to develop a protocol for the production of doubled haploids. Microspore reprogramming was induced in cassava by cold or heat stress of anthers. Since the anthers contain both haploid microspores and diploid somatic cells, it was essential to verify the origin of anther-derived calli. The origin of anther-derived calli was assessed by morphological screening followed by histological analysis and flow cytometry (FCM). Additionally, simple sequence repeat (SSR) and amplified fragmented length polymorphism (AFLP) assays were used for the molecular identification of the microspore-derived calli. The study clearly demonstrated the feasibility of producing microspore-derived calli using heat- or cold-pretreated anthers. Histological studies revealed reprogramming of the developmental pathway of microspores by symmetrical division of the nucleus. Flow cytometry analysis revealed different ploidy level cell types including haploids, which confirmed their origin from the microspores. The SSR and AFLP marker assays independently confirmed the histological and FCM results of a haploid origin of the calli at the DNA level. The presence of multicellular microspores in the in vitro system indicated a switch of developmental program, which constitutes a crucial step in the design of protocols for the regeneration of microspore-derived embryos and plants. This is the first detailed report of calli, embryos, and abnormal shoots originated from the haploid cells in cassava, leading to the development of a protocol for the production of doubled haploid plants in cassava
    corecore