20 research outputs found

    SINGLET OXYGEN INDUCED DNA DAMAGE AND MUTAGENICITY IN A SINGLE-STRANDED SV40-BASED SHUTTLE VECTOR

    No full text
    International audienceThe effects of singlet oxygen (1O2), generated by the thermal decomposition of water soluble NDPO2 (endoperoxide of the disodium 3,3'-(1,4-naphthylidene) dipropionate), on a single-stranded shuttle vector were analysed. 1O2 induces a much higher level of breaks in the phosphodiester backbone of single-stranded than double-stranded DNA. This may be due to a higher accessibility of guanine residue, primarily damaged by 1O2. The damaged vector was transfected into monkey COS7 cells where single-stranded DNA was converted to the double-stranded replicative form DNA. After 3 days, extrachromosomal DNA was extracted and the plasmids rescued in E. coli to study mutagenesis. There is a significant increase in mutation frequency of damaged single-stranded DNA in comparison to untreated DNA. It is concluded that 1O2 induces breaks in the backbone of single-stranded DNA and that the 1O2-damaged molecules are mutated after passage through mammalian cells

    Optogenetic mutagenesis in Caenorhabditis elegans

    No full text
    Reactive oxygen species (ROS) can modify and damage DNA. Here we report an optogenetic mutagenesis approach that is free of toxic chemicals and easy to perform by taking advantage of a genetically encoded ROS generator. This method relies on the potency of ROS generation by His-mSOG, the mini singlet oxygen generator, miniSOG, fused to a histone. Caenorhabditis elegans expressing His-mSOG in the germline behave and reproduce normally, without photoinduction. Following exposure to blue light, the His-mSOG animals produce progeny with a wide range of heritable phenotypes. We show that optogenetic mutagenesis by His-mSOG induces a broad spectrum of mutations including single-nucleotide variants (SNVs), chromosomal deletions, as well as integration of extrachromosomal transgenes, which complements those derived from traditional chemical or radiation mutagenesis. The optogenetic mutagenesis expands the toolbox for forward genetic screening and also provides direct evidence that nuclear ROS can induce heritable and specific genetic mutations
    corecore