18 research outputs found

    Role of nonhuman primate models in the discovery and clinical development of selective progesterone receptor modulators (SPRMs)

    Get PDF
    Selective progesterone receptor modulators (SPRMs) represent a new class of progesterone receptor ligands that exert clinically relevant tissue-selective progesterone agonist, antagonist, partial, or mixed agonist/antagonist effects on various progesterone target tissues in an in vivo situation depending on the biological action studied. The SPRM asoprisnil is being studied in women with symptomatic uterine leiomyomata and endometriosis. Asoprisnil shows a high degree of uterine selectivity as compared to effects on ovulation or ovarian hormone secretion in humans. It induces amenorrhea and decreases leiomyoma volume in a dose-dependent manner in the presence of follicular phase estrogen concentrations. It also has endometrial antiproliferative effects. In pregnant animals, the myometrial, i.e. labor-inducing, effects of asoprisnil are blunted or absent. Studies in non-human primates played a key role during the preclinical development of selective progesterone receptor modulators. These studies provided the first evidence of uterus-selective effects of asoprisnil and structurally related compounds, and the rationale for clinical development of asoprisnil

    PKA and GAB2 play central roles in the FSH signaling pathway to PI3K and AKT in ovarian granulosa cells

    No full text
    Controlled maturation of ovarian follicles is necessary for fertility. Follicles are restrained at an immature stage until stimulated by FSH secreted by pituitary gonadotropes. FSH acts on granulosa cells within the immature follicle to inhibit apoptosis, promote proliferation, stimulate production of steroid and protein hormones, and induce ligand receptors and signaling intermediates. The phosphoinositide 3-kinase (PI3K)/AKT (protein kinase B) pathway is a pivotal signaling corridor necessary for transducing the FSH signal. We report that protein kinase A (PKA) mediates the actions of FSH by signaling through multiple targets to activate PI3K/AKT. PKA uses a route that promotes phosphorylation of insulin receptor substrate-1 (IRS-1) on Tyr(989), a canonical binding site for the 85-kDa regulatory subunit of PI3K that allosterically activates the catalytic subunit. PI3K activation leads to activation of AKT through phosphorylation of AKT on Thr(308) and Ser(473). The adaptor growth factor receptor bound protein 2-associated binding protein 2 (GAB2) is present in a preformed complex with PI3K heterodimer and IRS-1, it is an A-kinase anchoring protein that binds the type I regulatory subunit of PKA, and it is phosphorylated by PKA on Ser(159). Overexpression of GAB2 enhances FSH-stimulated AKT phosphorylation. GAB2, thus, seems to coordinate signals from the FSH-stimulated rise in cAMP that leads to activation of PI3K/AKT. The ability of PKA to commandeer IRS-1 and GAB2, adaptors that normally integrate receptor/nonreceptor tyrosine kinase signaling into PI3K/AKT, reveals a previously unrecognized route for PKA to activate a pathway that promotes proliferation, inhibits apoptosis, enhances translation, and initiates differentiation of granulosa cells
    corecore