511 research outputs found

    Biomimetic heterogenous elastic tissue development

    Get PDF
    There is an unmet need for artificial tissue to address current limitations with donor organs and problems with donor site morbidity. Despite the success with sophisticated tissue engineering endeavours, which employ cells as building blocks, they are limited to dedicated labs suitable for cell culture, with associated high costs and long tissue maturation times before available for clinical use. Direct 3D printing presents rapid, bespoke, acellular solutions for skull and bone repair or replacement, and can potentially address the need for elastic tissue, which is a major constituent of smooth muscle, cartilage, ligaments and connective tissue that support organs. Thermoplastic polyurethanes are one of the most versatile elastomeric polymers. Their segmented block copolymeric nature, comprising of hard and soft segments allows for an almost limitless potential to control physical properties and mechanical behaviour. Here we show direct 3D printing of biocompatible thermoplastic polyurethanes with Fused Deposition Modelling, with a view to presenting cell independent in-situ tissue substitutes. This method can expeditiously and economically produce heterogenous, biomimetic elastic tissue substitutes with controlled porosity to potentially facilitate vascularisation. The flexibility of this application is shown here with tubular constructs as exemplars. We demonstrate how these 3D printed constructs can be post-processed to incorporate bioactive molecules. This efficacious strategy, when combined with the privileges of digital healthcare, can be used to produce bespoke elastic tissue substitutes in-situ, independent of extensive cell culture and may be developed as a point-of-care therapy approach

    The occupancy of two distinct conformations by active-site histidine-119 in crystals of ribonuclease is modulated by pH

    Get PDF
    AbstractStructures of a semisynthetic RNase have been obtained to a resolution of 2.0 Å at pH values of 5.2, 6.5, 7.5, and 8.8, respectively. The principle structural transformation occurring over this pH range is the conversion of the side chain of active site residue His-119 from one conformation (X1 = −43° to −57°) at low pH to another (X1 = + 159° to + 168°) at higher pH values. On the basis of this observation, a model is proposed that reconciles the disparate pK values for His-119 in the enzyme-substrate complex that have been deduced from kinetic studies and from proton NMR measurements in the presence of pseudosubstrates

    Structural changes that accompany the reduced catalytic efficiency of two semisynthetic ribonuclease analogs

    Get PDF
    The structures of two catalytically defective semi-synthetic RNases obtained by replacing aspartic acid 121 with asparagine or alanine have been determined and refined at a resolution of 2.0 A (R = 0.186 and 0.172, respectively). When these structures are compared with the refined 1.8-A structure (R = 0.204) of the fully active aspartic acid-containing enzyme (Martin, P.D., Doscher, M.S., and Edwards, B. F. P. (1987) J. Biol. Chem. 262, 15930-15938), numerous and widespread changes, much greater in number and magnitude than the small structural variations noted previously between the semisynthetic complex and RNase A, are found to have occurred. These changes include the movement of the loop containing residues 65-72 away from the active site, a more or less generalized relocation of crystallographically bound water molecules, and a number of rearrangements in the hydrogen bonding network at the active site. Most changes are far removed from the immediate site of the modifications and are distributed essentially throughout the molecule. The details of many of these changes are unique to each analog. In the asparagine analog, a destabilization in the positioning of active site residue His-119 also appears to have occurred

    Design and fabrication of 3D-printed anatomically shaped lumbar cage for intervertebra disc (IVD) degeneration treatment

    Get PDF
    Spinal fusion is the gold standard surgical procedure for degenerative spinal conditions when conservative therapies have been unsuccessful in rehabilitation of patients. Novel strategies are required to improve biocompatibility and osseointegration of traditionally used materials for lumbar cages. Furthermore, new design and technologies are needed to bridge the gap due to the shortage of optimal implant sizes to fill the intervertebral disc defect. Within this context, additive manufacturing technology presents an excellent opportunity to fabricate ergonomic shape medical implants. The goal of this study is to design and manufacture a 3D-printed lumbar cage for lumbar interbody fusion. Optimisations of the proposed implant design and its printing parameters were achieved via in silico analysis. The final construct was characterised via scanning electron microscopy, contact angle, x-ray micro computed tomography (μCT), atomic force microscopy, and compressive test. Preliminary in vitro cell culture tests such as morphological assessment and metabolic activities were performed to access biocompatibility of 3D-printed constructs. Results of in silico analysis provided a useful platform to test preliminary cage design and to find an optimal value of filling density for 3D printing process. Surface characterisation confirmed a uniform coating of nHAp with nanoscale topography. Mechanical evaluation showed mechanical properties of final cage design similar to that of trabecular bone. Preliminary cell culture results showed promising results in terms of cell growth and activity confirming biocompatibility of constructs. Thus for the first time, design optimisation based on computational and experimental analysis combined with the 3D-printing technique for intervertebral fusion cage has been reported in a single study. 3D-printing is a promising technique for medical applications and this study paves the way for future development of customised implants in spinal surgical applications

    Análisis de sensibilidad y estudio crítico del modelo de evaluación de la sostenibilidad de la Instrucción Española de Hormigón Estructural

    Get PDF
    This paper presents the results of the sensitivity analysis performed for the sustainability assessment model of the Span-ish Code on Structural Concrete, EHE-08. It also portrays the results of a life-cycle analysis (LCA) related to energy con-sumption and CO2 emissions. Comparisons are made between those findings, for suggesting improvements to the model. The main conclusion is that some weights and value functions employed in the EHE-08 are not consistent with the LCA. The new versions of the Spanish Code should include other weights and value functions to get closer to the LCA results.Este artículo presenta los resultados de un análisis de sensibilidad del modelo de evaluación de la sostenibilidad de la Instrucción Española de Hormigón Estructural EHE-08. Expone también los resultados de un análisis de ciclo de vida (ACV) de consumo de energía y emisiones de CO2. A partir de ello se realizan comparaciones, con el objetivo de establecer propuestas de mejora para dicho modelo. La conclusión más importante es que algunos de los pesos y funciones de valor usados en el mismo no son coherentes con los resultados del análisis de ciclo de vida. El modelo de sostenibilidad que se establezca en próximas versiones normativas debería tener otros pesos y funciones que sirvan para acercarse más a los resultados del ACV

    Charge variants characterization and release assay development for co-formulated antibodies as a combination therapy

    Full text link
    © 2019, © 2019 The Author(s). Published with license by Taylor & Francis Group, LLC. Combination therapy is a fast-growing strategy to maximize therapeutic benefits to patients. Co-formulation of two or more therapeutic proteins has advantages over the administration of multiple medications, including reduced medication errors and convenience for patients. Characterization of co-formulated biologics can be challenging due to the high degree of similarity in the physicochemical properties of co-formulated proteins, especially at different concentrations of individual components. We present the results of a deamidation study of one monoclonal antibody component (mAb-B) in co-formulated combination antibodies (referred to as COMBO) that contain various ratios of mAb-A and mAb-B. A single deamidation site in the complementarity-determining region of mAb-B was identified as a critical quality attribute (CQA) due to its impact on biological activity. A conventional charge-based method of monitoring mAb-B deamidation presented specificity and robustness challenges, especially when mAb-B was a minor component in the COMBO, making it unsuitable for lot release and stability testing. We developed and qualified a new, quality-control-friendly, single quadrupole Dalton mass detector (QDa)–based method to monitor site-specific deamidation. Our approach can be also used as a multi-attribute method for monitoring other quality attributes in COMBO. This analytical paradigm is applicable to the identification of CQAs in combination therapeutic molecules, and to the subsequent development of a highly specific, highly sensitive, and sufficiently robust method for routine monitoring CQAs for lot release test and during stability studies
    • …
    corecore