35 research outputs found

    Hormonal signaling in cnidarians : do we understand the pathways well enough to know whether they are being disrupted?

    Get PDF
    Author Posting. © The Author, 2006. This is the author's version of the work. It is posted here by permission of Springer for personal use, not for redistribution. The definitive version was published in Ecotoxicology 16 (2007): 5-13, doi:10.1007/s10646-006-0121-1.Cnidarians occupy a key evolutionary position as basal metazoans and are ecologically important as predators, prey and structure-builders. Bioregulatory molecules (e.g., amines, peptides and steroids) have been identified in cnidarians, but cnidarian signaling pathways remain poorly characterized. Cnidarians, especially hydras, are regularly used in toxicity testing, but few studies have used cnidarians in explicit testing for signal disruption. Sublethal endpoints developed in cnidarians include budding, regeneration, gametogenesis, mucus production and larval metamorphosis. Cnidarian genomic databases, microarrays and other molecular tools are increasingly facilitating mechanistic investigation of signaling pathways and signal disruption. Elucidation of cnidarian signaling processes in a comparative context can provide insight into the evolution and diversification of metazoan bioregulation. Characterizing signaling and signal disruption in cnidarians may also provide unique opportunities for evaluating risk to valuable marine resources, such as coral reefs

    Early evolution of the LIM homeobox gene family

    Get PDF
    Background: LIM homeobox (Lhx) transcription factors are unique to the animal lineage and have patterning roles during embryonic development in flies, nematodes and vertebrates, with a conserved role in specifying neuronal identity. Though genes of this family have been reported in a sponge and a cnidarian, the expression patterns and functions of the Lhx family during development in non-bilaterian phyla are not known

    RNA from heart of young and old rats leads to the expression of protein(s) in Xenopus oocytes that alter the transport activity of rat Na<sup>+</sup>,K<sup>+</sup>-ATPases differently

    No full text
    To address the question of whether the function of Na+,K+-ATPases differs in the heart of young and old rats, enzymes formed from the α1 or α2 isoform with the β1 subunit of rat were expressed in Xenopus oocytes. In addition to injections of the cRNA coding for the respective subunits, oocytes were co-injected with total RNA from the left ventricle of young or old rats. To assess alterations in transport activity due to the co-injections, ouabain-sensitive 86Rb+ uptake was measured. Co-injection of the RNA from young rats led to 31% inhibition of 86Rb+ uptake into oocytes with the α1/β1 pumps while uptake into oocytes with the α2/β1 pumps was hardly affected. Co-injection of the RNA from old rats, on the other hand, reduced 86Rb+ uptake only in cells with the α2/β1 isoform (to 85%). The steady-state current generated in the absence of external Na+ by the α1/β1 ATPase was significantly reduced by co-injection of RNA only from young rats to 70%, and this inhibition was hardly affected by membrane potential. For the α2/β1 ATPase co-injection of RNA only from old rats also led to a significant reduction of pump-mediated current at potentials more negative than –70 mV to 70–80%. In the presence of Na+, inhibition of the α1 isoform by co-injection of RNA from young rats is voltage-dependent, increasing with more negative potentials. For the α2/β1 pump, co-injection of RNA from old rats was no longer effective, but voltage-dependent inhibition by co-injection of RNA from young rats became apparent. The data indicate that changes in protein expression occurring in young and old rat hearts may modulate transport activity of the Na+,K+-ATPase and this modulation depends on membrane potential and the presence of external Na+. We propose that the described mechanisms may play a functional role in working myocardium, and may form a basis for processes involved in heart aging

    Primary structure of the precursor for the sea anemone neuropeptide Antho-RFamide (less than Glu-Gly-Arg-Phe-NH2).

    No full text
    Neuropeptides containing the carboxylterminal sequence Arg-Phe-NH2 are found throughout the animal kingdom and are important substances mediating neuronal communication. Here, we have cloned the cDNA coding for the precursor protein of the sea anemone neuropeptide (Antho-RFamide) less than Glu-Gly-Arg-Phe-NH2. This precursor is 334 amino acids in length and contains 19 copies of unprocessed Antho-RFamide (Gln-Gly-Arg-Phe-Gly), which are tandemly arranged in the C-terminal part of the protein. Paired basic residues (Lys-Arg) or single basic residues (Arg) occur at the C-terminal side of each Antho-RFamide sequence. These are likely signals for posttranslational cleavage. The processing signals at the N-terminal side of each Antho-RFamide sequence, however, include acidic residues. Processing at these amino acids must involve either an amino- or an endopeptidase that cleaves C-terminally of aspartic acid or glutamic acid residues. Such processing is, to our knowledge, hitherto unknown for peptidergic neurons. The Antho-RFamide precursor also contains two copies of the putative Antho-RFamide-related peptide Phe-Gln-Gly-Arg-Phe-NH2 and one copy of Tyr-Val-Pro-Gly-Arg-Tyr-NH2. In addition, the precursor protein harbors four other putative neuropeptides that are much less related to Antho-RFamide. This report shows that the biosynthetic machinery for neuropeptides in coelenterates, the lowest animal group having a nervous system, is already very efficient and similar to that of higher invertebrates, such as mollusks and insects, and vertebrates

    Three different prohormones yield a variety of Hydra-RFamide (Arg-Phe-NH2) neuropeptides in Hydra magnipapillata.

    No full text
    The freshwater polyp Hydra is the most frequently used model for the study of development in cnidarians. Recently we isolated four novel Arg-Phe-NH2 (RFamide) neuropeptides, the Hydra-RFamides I-IV, from Hydra magnipapillata. Here we describe the molecular cloning of three different preprohormones from H. magnipapillata, each of which gives rise to a variety of RFamide neuropeptides. Preprohormone A contains one copy of unprocessed Hydra-RFamide I (QWLGGRFG), II (QWFNGRFG), III/IV [(KP)HLRGRFG] and two putative neuropeptide sequences (QLMSGRFG and QLMRGRFG). Preprohormone B has the same general organization as preprohormone A, but instead of unprocessed Hydra-RFamide III/IV it contains a slightly different neuropeptide sequence [(KP)HYRGRFG]. Preprohormone C contains one copy of unprocessed Hydra-RFamide I and seven additional putative neuropeptide sequences (with the common N-terminal sequence QWF/LSGRFGL). The two Hydra-RFamide II copies (in preprohormones A and B) are preceded by Thr residues, and the single Hydra-RFamide III/IV copy (in preprohormone A) is preceded by an Asn residue, confirming that cnidarians use unconventional processing signals to generate neuropeptides from their precursor proteins. Southern blot analyses suggest that preprohormones A and B are each coded for by a single gene, whereas one or possibly two closely related genes code for preprohormone C. Northern blot analyses and in situ hybridizations show that the gene coding for preprohormone A is expressed in neurons of both the head and foot regions of Hydra, whereas the genes coding for preprohormones B and C are specifically expressed in neurons of different regions of the head. All of this shows that neuropeptide biosynthesis in the primitive metazoan Hydra is already rather complex
    corecore