2,125 research outputs found

    CMB Distortions from Superconducting Cosmic Strings

    Full text link
    We reconsider the effect of electromagnetic radiation from superconducting strings on cosmic microwave background (CMB) mu- and y-distortions and derive present (COBE-FIRAS) and future (PIXIE) constraints on the string tension, mu_s, and electric current, I. We show that absence of distortions of the CMB in PIXIE will impose strong constraints on mu_s and I, leaving the possibility of light strings (G mu_s < 10^{-18}) or relatively weak currents (I < 10 TeV).Comment: 10pages, 5 figures, Submitted to PRD, v2:References added, replaced to match the PRD versio

    An evolutionary model for GHz Peaked Spectrum Sources. Predictions for high frequency surveys

    Get PDF
    We have explored, in the general framework of the ``young source'' scenario, evolutionary models for GHz Peaked Spectrum (GPS) galaxies and quasars which reproduce the observed counts, redshift and peak frequency distributions of currently available samples. Substantially different cosmological evolution properties are found for the two populations: the quasar luminosity function must evolve strongly up to z∌1z\sim 1, while the data on galaxies may be consistent with no evolution. The models show that GPS sources (mostly quasars) may comprise quite a significant fraction of bright (S>1S> 1 Jy) radio sources at Μ≄30\nu \geq 30 GHz if the intrinsic distribution of peak frequencies extends up to ∌1000\sim 1000 GHz. In any case, however, their fraction decreases rapidly with decreasing flux and their contribution to small scale fluctuations in the frequency range covered by the forthcoming space missions MAP and Planck Surveyor is expected to be minor.Comment: 7 pages, 4 figures, A&A accepte

    Spectroscopy of moderately high-redshift RCS-1 clusters

    Full text link
    We present spectroscopic observations of 11 moderately high-redshift (z~0.7- 1.0) clusters from the first Red-Sequence Cluster Survey (RCS-1). We find excellent agreement between the red-sequence estimated redshift and the spectroscopic redshift, with a scatter of 10% at z>0.7. At the high-redshift end (z>~0.9) of the sample, we find two of the systems selected are projections of pairs of comparably rich systems, with red-sequences too close to discriminate in (R-z') colour. In one of these systems, the two components are close enough to be physically associated. For a subsample of clusters with sufficient spectroscopic members, we examine the correlation between B_gcR (optical richness) and the dynamical mass inferred from the velocity dispersion. We find these measurements to be compatible, within the relatively large uncertainties, with the correlation established at lower redshift for the X-ray selected CNOC1 clusters and also for a lower redshift sample of RCS-1 clusters. Confirmation of this and calibration of the scatter in the relation will require larger samples of clusters at these and higher redshifts. [abridged]Comment: AJ accepted. 30 pages, 7 figures (figure 5 reduced quality

    A New Window on Primordial non-Gaussianity

    Full text link
    We know very little about primordial curvature perturbations on scales smaller than about a Mpc. Measurements of the mu-type distortion of the CMB spectrum provide the unique opportunity to probe these scales over the unexplored range from 50 to 10^4 Mpc^-1. This is a very clean probe, in that it relies only on well-understood linear evolution. We point out that correlations between mu-distortion and temperature anisotropies can be used to test Gaussianity at these very small scales. In particular the mu-T cross correlation is proportional to the very squeezed limit of the primordial bispectrum and hence measures fNL^loc, while mu-mu is proportional to the primordial trispectrum and measures tauNL. We present a Fisher matrix forecast of the observational constraints.Comment: 5 pages, one figure. v2: added clarifying comments and references, fixed typo

    A Redshift Survey of Nearby Galaxy Groups: the Shape of the Mass Density Profile

    Full text link
    We constrain the mass profile and orbital structure of nearby groups and clusters of galaxies. Our method yields the joint probability distribution of the density slope n, the velocity anisotropy beta, and the turnover radius r0 for these systems. The measurement technique does not use results from N-body simulations as priors. We incorporate 2419 new redshifts in the fields of 41 systems of galaxies with z < 0.04. The new groups have median velocity dispersion sigma=360 km/s. We also use 851 archived redshifts in the fields of 8 nearly relaxed clusters with z < 0.1. Within R < 2 r200, the data are consistent with a single power law matter density distribution with slope n = 1.8-2.2 for systems with sigma < 470 km/s, and n = 1.6-2.0 for those with sigma > 470 km/s (95% confidence). We show that a simple, scale-free phase space distribution function f(E,L^2) ~ (-E)^(alpha-1/2) L^(-2 \beta) is consistent with the data as long as the matter density has a cusp. Using this DF, matter density profiles with constant density cores (n=0) are ruled out with better than 99.7% confidence.Comment: 22 pages; accepted for publication in the Astrophysical Journa
    • 

    corecore