135 research outputs found
Equation of state of fully ionized electron-ion plasmas
Thermodynamic quantities of Coulomb plasmas consisting of point-like ions
immersed in a compressible, polarizable electron background are calculated for
ion charges Z=1 to 26 and for a wide domain of plasma parameters ranging from
the Debye-Hueckel limit to the crystallization point and from the region of
nondegenerate to fully degenerate nonrelativistic or relativistic electrons.
The calculations are based on the linear-response theory for the electron-ion
interaction, including the local-field corrections in the electronic dielectric
function. The thermodynamic quantities are calculated in the framework of the
N-body hypernetted-chain equations and fitted by analytic expressions. We
present also accurate analytic approximations for the free energy of the ideal
electron gas at arbitrary degeneracy and relativity and for the excess free
energy of the one-component plasma of ions (OCP) derived from Monte Carlo
simulations.
The extension to multi-ionic mixtures is discussed within the framework of
the linear mixing rule. These formulae provide a completely analytic, accurate
description of the thermodynamic quantities of fully ionized electron-ion
Coulomb plasmas, a useful tool for various applications from liquid state
theory to dense stellar matter.Comment: 13 pages, 2 tables, 7 figures, REVTeX using epsf.sty. To be published
in Phys. Rev. E, vol. 58 (1998
The band structure of BeTe - a combined experimental and theoretical study
Using angle-resolved synchrotron-radiation photoemission spectroscopy we have
determined the dispersion of the valence bands of BeTe(100) along ,
i.e. the [100] direction. The measurements are analyzed with the aid of a
first-principles calculation of the BeTe bulk band structure as well as of the
photoemission peaks as given by the momentum conserving bulk transitions.
Taking the calculated unoccupied bands as final states of the photoemission
process, we obtain an excellent agreement between experimental and calculated
spectra and a clear interpretation of almost all measured bands. In contrast,
the free electron approximation for the final states fails to describe the BeTe
bulk band structure along properly.Comment: 21 pages plus 4 figure
Effects of anharmonic strain on phase stability of epitaxial films and superlattices: applications to noble metals
Epitaxial strain energies of epitaxial films and bulk superlattices are
studied via first-principles total energy calculations using the local-density
approximation. Anharmonic effects due to large lattice mismatch, beyond the
reach of the harmonic elasticity theory, are found to be very important in
Cu/Au (lattice mismatch 12%), Cu/Ag (12%) and Ni/Au (15%). We find that
is the elastically soft direction for biaxial expansion of Cu and Ni, but it is
for large biaxial compression of Cu, Ag, and Au. The stability of
superlattices is discussed in terms of the coherency strain and interfacial
energies. We find that in phase-separating systems such as Cu-Ag the
superlattice formation energies decrease with superlattice period, and the
interfacial energy is positive. Superlattices are formed easiest on (001) and
hardest on (111) substrates. For ordering systems, such as Cu-Au and Ag-Au, the
formation energy of superlattices increases with period, and interfacial
energies are negative. These superlattices are formed easiest on (001) or (110)
and hardest on (111) substrates. For Ni-Au we find a hybrid behavior:
superlattices along and like in phase-separating systems, while for
they behave like in ordering systems. Finally, recent experimental
results on epitaxial stabilization of disordered Ni-Au and Cu-Ag alloys,
immiscible in the bulk form, are explained in terms of destabilization of the
phase separated state due to lattice mismatch between the substrate and
constituents.Comment: RevTeX galley format, 16 pages, includes 9 EPS figures, to appear in
Physical Review
BAs and boride III-V alloys
Boron arsenide, the typically-ignored member of the III-V arsenide series
BAs-AlAs-GaAs-InAs is found to resemble silicon electronically: its Gamma
conduction band minimum is p-like (Gamma_15), not s-like (Gamma_1c), it has an
X_1c-like indirect band gap, and its bond charge is distributed almost equally
on the two atoms in the unit cell, exhibiting nearly perfect covalency. The
reasons for these are tracked down to the anomalously low atomic p orbital
energy in the boron and to the unusually strong s-s repulsion in BAs relative
to most other III-V compounds. We find unexpected valence band offsets of BAs
with respect to GaAs and AlAs. The valence band maximum (VBM) of BAs is
significantly higher than that of AlAs, despite the much smaller bond length of
BAs, and the VBM of GaAs is only slightly higher than in BAs. These effects
result from the unusually strong mixing of the cation and anion states at the
VBM. For the BAs-GaAs alloys, we find (i) a relatively small (~3.5 eV) and
composition-independent band gap bowing. This means that while addition of
small amounts of nitrogen to GaAs lowers the gap, addition of small amounts of
boron to GaAs raises the gap (ii) boron ``semi-localized'' states in the
conduction band (similar to those in GaN-GaAs alloys), and (iii) bulk mixing
enthalpies which are smaller than in GaN-GaAs alloys. The unique features of
boride III-V alloys offer new opportunities in band gap engineering.Comment: 18 pages, 14 figures, 6 tables, 61 references. Accepted for
publication in Phys. Rev. B. Scheduled to appear Oct. 15 200
Thermal Density Functional Theory in Context
This chapter introduces thermal density functional theory, starting from the
ground-state theory and assuming a background in quantum mechanics and
statistical mechanics. We review the foundations of density functional theory
(DFT) by illustrating some of its key reformulations. The basics of DFT for
thermal ensembles are explained in this context, as are tools useful for
analysis and development of approximations. We close by discussing some key
ideas relating thermal DFT and the ground state. This review emphasizes thermal
DFT's strengths as a consistent and general framework.Comment: Submitted to Spring Verlag as chapter in "Computational Challenges in
Warm Dense Matter", F. Graziani et al. ed
Toll-like receptor 2 expression is decreased on alveolar macrophages in cigarette smokers and COPD patients
BACKROUND: Cigarette smoke exposure including biologically active lipopolysaccharide (LPS) in the particulate phase of cigarette smoke induces activation of alveolar macrophages (AM) and alveolar epithelial cells leading to production of inflammatory mediators. This represents a crucial mechanism in the pathogenesis of chronic obstructive pulmonary disease (COPD). Respiratory pathogens are a major cause of exacerbations leading to recurrent cycles of injury and repair. The interaction between pathogen-associated molecular patterns and the host is mediated by pattern recognition receptors (PRR's). In the present study we characterized the expression of Toll-like receptor (TLR)- 2, TLR4 and CD14 on human AM compared to autologous monocytes obtained from patients with COPD, healthy smokers and non-smokers. METHODS: The study population consisted of 14 COPD patients without evidence for acute exacerbation, 10 healthy smokers and 17 healthy non-smokers stratified according to age. The expression of TLR2, TLR4 and CD14 surface molecules on human AM compared to autologous monocytes was assessed ex vivo using FACS analysis. In situ hybridization was performed on bronchoalveolar lavage (BAL) cells by application of the new developed HOPE-fixative. RESULTS: The expression of TLR2, TLR4 and CD14 on AM from COPD patients, smokers and non-smokers was reduced as compared to autologous monocytes. Comparing AM we detected a reduced expression of TLR2 in COPD patients and smokers. In addition TLR2 mRNA and protein expression was increased after LPS stimulation on non-smokers AM in contrast to smokers and COPD patients. CONCLUSION: Our data suggest a smoke related change in the phenotype of AM's and the cellular response to microbial stimulation which may be associated with impairment of host defenses in the lower respiratory tract
Which Lynch syndrome screening programs could be implemented in the "real world"? A systematic review of economic evaluations
Purpose: Lynch syndrome (LS) screening can significantly reduce cancer morbidity and mortality in mutation carriers. Our aim was to identify cost-effective LS screening programs that can be implemented in the "real world."Methods: We performed a systematic review of full economic evaluations of genetic screening for LS in different target populations; health outcomes were estimated in life-years gained or quality-adjusted life-years.Results: Overall, 20 studies were included in the systematic review. Based on the study populations, we identified six categories of LS screening program: colorectal cancer (CRC)-based, endometrial cancer-based, general population-based, LS family registry-based, cascade testing-based, and genetics clinic-based screening programs. We performed an in-depth analysis of CRC-based LS programs, classifying them into three additional subcategories: universal, age-targeted, and selective. In five studies, universal programs based on immunohistochemistry, either alone or in combination with the BRAF test, were cost-effective compared with no screening, while in two studies age-targeted programs with a cutoff of 70 years were cost-effective when compared with age-targeted programs with lower age thresholds. Conclusion: Universal or <70 years-age-targeted CRC-based LS screening programs are cost-effective and should be implemented in the "real world
Recommended from our members
The XENONnT dark matter experiment.
The multi-staged XENON program at INFN Laboratori Nazionali del Gran Sasso aims to detect dark matter with two-phase liquid xenon time projection chambers of increasing size and sensitivity. The XENONnT experiment is the latest detector in the program, planned to be an upgrade of its predecessor XENON1T. It features an active target of 5.9 tonnes of cryogenic liquid xenon (8.5 tonnes total mass in cryostat). The experiment is expected to extend the sensitivity to WIMP dark matter by more than an order of magnitude compared to XENON1T, thanks to the larger active mass and the significantly reduced background, improved by novel systems such as a radon removal plant and a neutron veto. This article describes the XENONnT experiment and its sub-systems in detail and reports on the detector performance during the first science run
- âŠ