1,757 research outputs found
A rich hierarchy of functionals of finite types
We are considering typed hierarchies of total, continuous functionals using
complete, separable metric spaces at the base types. We pay special attention
to the so called Urysohn space constructed by P. Urysohn. One of the properties
of the Urysohn space is that every other separable metric space can be
isometrically embedded into it. We discuss why the Urysohn space may be
considered as the universal model of possibly infinitary outputs of algorithms.
The main result is that all our typed hierarchies may be topologically
embedded, type by type, into the corresponding hierarchy over the Urysohn
space. As a preparation for this, we prove an effective density theorem that is
also of independent interest.Comment: 21 page
Comparing hierarchies of total functionals
In this paper we consider two hierarchies of hereditarily total and
continuous functionals over the reals based on one extensional and one
intensional representation of real numbers, and we discuss under which
asumptions these hierarchies coincide. This coincidense problem is equivalent
to a statement about the topology of the Kleene-Kreisel continuous functionals.
As a tool of independent interest, we show that the Kleene-Kreisel functionals
may be embedded into both these hierarchies.Comment: 28 page
Structure of plastically compacting granular packings
The developing structure in systems of compacting ductile grains were studied
experimentally in two and three dimensions. In both dimensions, the peaks of
the radial distribution function were reduced, broadened, and shifted compared
with those observed in hard disk- and sphere systems. The geometrical
three--grain configurations contributing to the second peak in the radial
distribution function showed few but interesting differences between the
initial and final stages of the two dimensional compaction. The evolution of
the average coordination number as function of packing fraction is compared
with other experimental and numerical results from the literature. We conclude
that compaction history is important for the evolution of the structure of
compacting granular systems.Comment: 12 pages, 12 figure
Theoretical study of Ga-based nanowires and the interaction of Ga with single-wall carbon nanotubes
Gallium displays physical properties which can make it a potential element to
produce metallic nanowires and high-conducting interconnects in
nanoelectronics. Using first-principles pseudopotential plane method we showed
that Ga can form stable metallic linear and zigzag monatomic chain structures.
The interaction between individual Ga atom and single-wall carbon nanotube
(SWNT) leads to a chemisorption bond involving charge transfer. Doping of SWNT
with Ga atom gives rise to donor states. Owing to a significant interaction
between individual Ga atom and SWNT, continuous Ga coverage of the tube can be
achieved. Ga nanowires produced by the coating of carbon nanotube templates are
found to be stable and high conducting.Comment: 8 pages, 8 figure
Social Roles and Baseline Proxemic Preferences for a Domestic Service Robot
© The Author(s) 2014. This article is published with open access at Springerlink.com. This article is distributed under the terms of the Creative Commons Attribution License which permits any use, distribution, and reproduction in any medium, provided the original author(s) and the source are credited. The work described in this paper was conducted within the EU Integrated Projects LIREC (LIving with Robots and intEractive Companions, funded by the European Commission under contract numbers FP7 215554, and partly funded by the ACCOMPANY project, a part of the European Union’s Seventh Framework Programme (FP7/2007–2013) under grant agreement n287624The goal of our research is to develop socially acceptable behavior for domestic robots in a setting where a user and the robot are sharing the same physical space and interact with each other in close proximity. Specifically, our research focuses on approach distances and directions in the context of a robot handing over an object to a userPeer reviewe
Electron affinity of Li: A state-selective measurement
We have investigated the threshold of photodetachment of Li^- leading to the
formation of the residual Li atom in the state. The excited residual
atom was selectively photoionized via an intermediate Rydberg state and the
resulting Li^+ ion was detected. A collinear laser-ion beam geometry enabled
both high resolution and sensitivity to be attained. We have demonstrated the
potential of this state selective photodetachment spectroscopic method by
improving the accuracy of Li electron affinity measurements an order of
magnitude. From a fit to the Wigner law in the threshold region, we obtained a
Li electron affinity of 0.618 049(20) eV.Comment: 5 pages,6 figures,22 reference
- …
