15,496 research outputs found
The free rigid body dynamics: generalized versus classic
In this paper we analyze the normal forms of a general quadratic Hamiltonian
system defined on the dual of the Lie algebra of real -
skew - symmetric matrices, where is an arbitrary real symmetric
matrix. A consequence of the main results is that any first-order autonomous
three-dimensional differential equation possessing two independent quadratic
constants of motion which admits a positive/negative definite linear
combination, is affinely equivalent to the classical "relaxed" free rigid body
dynamics with linear controls.Comment: 12 page
Two-component {CH} system: Inverse Scattering, Peakons and Geometry
An inverse scattering transform method corresponding to a Riemann-Hilbert
problem is formulated for CH2, the two-component generalization of the
Camassa-Holm (CH) equation. As an illustration of the method, the multi -
soliton solutions corresponding to the reflectionless potentials are
constructed in terms of the scattering data for CH2.Comment: 22 pages, 3 figures, draft, please send comment
Stretching and folding processes in the 3D Euler and Navier-Stokes equations
Stretching and folding dynamics in the incompressible, stratified 3D Euler
and Navier-Stokes equations are reviewed in the context of the vector \bdB =
\nabla q\times\nabla\theta where q=\bom\cdot\nabla\theta. The variable
is the temperature and \bdB satisfies \partial_{t}\bdB =
\mbox{curl}\,(\bu\times\bdB). These ideas are then discussed in the context of
the full compressible Navier-Stokes equations where takes the two forms q
= \bom\cdot\nabla\rho and q = \bom\cdot\nabla(\ln\rho).Comment: UTAM Symposium on Understanding Common Aspects of Extreme Events in
Fluid
Elliptic instability in the Lagrangian-averaged Euler-Boussinesq-alpha equations
We examine the effects of turbulence on elliptic instability of rotating
stratified incompressible flows, in the context of the Lagragian-averaged
Euler-Boussinesq-alpha, or \laeba, model of turbulence. We find that the \laeba
model alters the instability in a variety of ways for fixed Rossby number and
Brunt-V\"ais\"al\"a frequency. First, it alters the location of the instability
domains in the parameter plane, where is the
angle of incidence the Kelvin wave makes with the axis of rotation and
is the eccentricity of the elliptic flow, as well as the size of the associated
Lyapunov exponent. Second, the model shrinks the width of one instability band
while simultaneously increasing another. Third, the model introduces bands of
unstable eccentric flows when the Kelvin wave is two-dimensional. We introduce
two similarity variables--one is a ratio of the Brunt-V\"ais\"al\"a frequency
to the model parameter , and the other is the
ratio of the adjusted inverse Rossby number to the same model parameter. Here,
is the turbulence correlation length, and is the Kelvin wave
number. We show that by adjusting the Rossby number and Brunt-V\"ais\"al\"a
frequency so that the similarity variables remain constant for a given value of
, turbulence has little effect on elliptic instability for small
eccentricities . For moderate and large eccentricities,
however, we see drastic changes of the unstable Arnold tongues due to the
\laeba model.Comment: 23 pages (sigle spaced w/figure at the end), 9 figures--coarse
quality, accepted by Phys. Fluid
Continuous and discrete Clebsch variational principles
The Clebsch method provides a unifying approach for deriving variational
principles for continuous and discrete dynamical systems where elements of a
vector space are used to control dynamics on the cotangent bundle of a Lie
group \emph{via} a velocity map. This paper proves a reduction theorem which
states that the canonical variables on the Lie group can be eliminated, if and
only if the velocity map is a Lie algebra action, thereby producing the
Euler-Poincar\'e (EP) equation for the vector space variables. In this case,
the map from the canonical variables on the Lie group to the vector space is
the standard momentum map defined using the diamond operator. We apply the
Clebsch method in examples of the rotating rigid body and the incompressible
Euler equations. Along the way, we explain how singular solutions of the EP
equation for the diffeomorphism group (EPDiff) arise as momentum maps in the
Clebsch approach. In the case of finite dimensional Lie groups, the Clebsch
variational principle is discretised to produce a variational integrator for
the dynamical system. We obtain a discrete map from which the variables on the
cotangent bundle of a Lie group may be eliminated to produce a discrete EP
equation for elements of the vector space. We give an integrator for the
rotating rigid body as an example. We also briefly discuss how to discretise
infinite-dimensional Clebsch systems, so as to produce conservative numerical
methods for fluid dynamics
K\'arm\'an--Howarth Theorem for the Lagrangian averaged Navier-Stokes alpha model
The K\'arm\'an--Howarth theorem is derived for the Lagrangian averaged
Navier-Stokes alpha (LANS) model of turbulence. Thus, the
LANS model's preservation of the fundamental transport structure of
the Navier-Stokes equations also includes preservation of the transport
relations for the velocity autocorrelation functions. This result implies that
the alpha-filtering in the LANS model of turbulence does not suppress
the intermittency of its solutions at separation distances large compared to
alpha.Comment: 11 pages, no figures. Includes an important remark by G. L. Eyink in
the conclusion
- …