93 research outputs found

    Parameter inference in mechanistic models of cellular regulation and signalling pathways using gradient matching

    Get PDF
    A challenging problem in systems biology is parameter inference in mechanistic models of signalling pathways. In the present article, we investigate an approach based on gradient matching and nonparametric Bayesian modelling with Gaussian processes. We evaluate the method on two biological systems, related to the regulation of PIF4/5 in Arabidopsis thaliana, and the JAK/STAT signal transduction pathway

    Multi physics modelling for a hybrid rocket engine with liquefying fuel: a sensitivity analysis on combustion instability

    Get PDF
    Hybrid rocket engines represent a promising alternative to both solid rocket motors and liquid rocket engines. They have throttling and restart capabilities with performance similar to storable liquids, but are safer and are low-cost. However, some drawbacks, such as low regression rate and combustion instability, are limiting their effective application. Paraffin-based fuels are a solution envisaged to face the low regression rate issue, and the capability to describe and predict combustion instability in the presence of liquefying fuels becomes an enabling step towards the application of hybrid rockets in next-generation space launchers. In this work, a multi physics model for hybrid rocket engines is presented and discussed. The model is based on a network of submodels, in which the chamber gas dynamics is described by a quasi-1D Euler model for reacting flows while thermal diffusion in the grain is described by the 1D heat equation in the radial direction. The need to introduce strong modelling simplifications introduces a significant uncertainty in the predictive capability of the numerical simulation. For this reason, a sensitivity analysis is performed in order to identify the key parameters which have the largest influence on combustion instability. Results are presented on a test case which refers to a paraffin-based grain burnt with hydrogen peroxide

    Dual inhibition of CDK4/6 and PI3K/AKT/mTOR signaling impairs energy metabolism in MPM cancer cells

    Get PDF
    Background: Malignant pleural mesothelioma (MPM) is an aggressive malignancy associated to asbestos exposure. One of the most frequent genetic alteration in MPM patients is CDKN2A/ARF loss, leading to aberrant activation of the Rb pathway. In MPM cells, we previously demonstrated the therapeutic efficacy of targeting this signaling with the CDK4/6 inhibitor palbociclib in combination with PI3K/mTOR inhibitors. Here, we investigated whether such combination may have an impact on cell energy metabolism. Methods: The study was performed in MPM cells of different histotypes; metabolic analyses were conducted by measuring GLUT-1 expression and glucose uptake/consumption, and by SeaHorse technologies. Results: MPM cell models differed for their ability to adapt to metabolic stress conditions, such as glucose starvation and hypoxia. Independently of these differences, combined treatments with palbociclib and PI3K/mTOR inhibitors inhibited cell proliferation more efficaciously than single agents. The drugs alone reduced glucose uptake/consumption as well as glycolysis, and their combination further enhanced these effects under both normoxic and hypoxic conditions. Moreover, the drug combinations significantly impaired mitochondrial respiration as compared with individual treatments. These metabolic effects were mediated by the concomitant inhibition of Rb/E2F/c-myc and PI3K/AKT/mTOR signaling. Conclusions: Dual blockade of glycolysis and respiration contributes to the anti-tumor efficacy of palbociclib-PI3K/mTOR inhibitors combination

    Simultaneous Combination of the CDK4/6 Inhibitor Palbociclib With Regorafenib Induces Enhanced Anti-tumor Effects in Hepatocarcinoma Cell Lines

    Get PDF
    Advanced hepatocarcinoma (HCC) is an aggressive malignancy with poor prognosis and limited treatment options. Alterations of the cyclin D-CDK4/6-Rb pathway occur frequently in HCC, providing the rationale for its targeting at least in a molecular subset of HCC. In a panel of HCC cell lines, we investigated whether the CDK4/6 inhibitor palbociclib might improve the efficacy of regorafenib, a powerful multi-kinase inhibitor approved as second-line treatment for advanced HCC after sorafenib failure and currently under clinical investigation as first-line therapy in combination with immunotherapy. In Rb-proficient cells, the simultaneous drug combination, but not the sequential schedules, inhibited cell proliferation, either in short or in long-term experiments, and induced cell death more strongly than individual treatments. Moreover, the combination significantly reduced spheroid cell growth and inhibited cell migration/invasion. The superior efficacy of palbociclib plus regorafenib emerged also under hypoxia and was associated with a significant down-regulation of CDK4/6-Rb-myc and mTORC1/p70S6K signaling. Moreover, regorafenib suppressed palbociclib-induced expression of cyclin D1 contributing to the cytotoxic effects of the combination. Besides these inhibitory effects on cell viability/proliferation, palbociclib and regorafenib reduced glucose uptake, although this effect was dependent on the cell model and on the oxygen availability (normoxia or hypoxia). Palbociclib and regorafenib combination impaired glucose uptake and utilization, down-regulating basal and hypoxia-induced expression of HIF-1α, HIF-2α, GLUT-1, and MCT4 proteins as well as the activity/expression of glycolytic enzymes (HK2, PFKP, aldolase A, PKM2). In addition, regorafenib alone reduced mitochondrial respiration. The combined treatment impaired glucose metabolism and respiration without enhancing the effects of the single agents. Our findings provide pre-clinical evidence for the effectiveness of palbociclib and regorafenib combination in HCC cell models

    Efficacy of the cdk4/6 dual inhibitor abemaciclib in egfr-mutated nsclc cell lines with different resistance mechanisms to osimertinib

    Get PDF
    Abemaciclib is an inhibitor of cyclin-dependent kinases (CDK) 4 and 6 that inhibits the transition from the G1 to the S phase of the cell cycle by blocking downstream CDK4/6-mediated phosphorylation of Rb. The effects of abemaciclib alone or combined with the third-generation epidermal growth factor receptor (EGFR) tyrosine kinase inhibitor (TKI) osimertinib were examined in a panel of PC9 and HCC827 osimertinib-resistant non-small cell lung cancer (NSCLC) cell lines carrying EGFR-dependent or-independent mechanisms of intrinsic or acquired resistance. Differently from sensitive cells, all the resistant cell lines analyzed maintained p-Rb, which may be considered as a biomarker of osimertinib resistance and a potential target for therapeutic intervention. In these models, abemaciclib inhibited cell growth, spheroid formation, colony formation, and induced senes-cence, and its efficacy was not enhanced in the presence of osimertinib. Interestingly, in osimertinib sensitive PC9, PC9T790M, and H1975 cells the combination of abemaciclib with osimertinib significantly inhibited the onset of resistance in long-term experiments. Our findings provide a preclinical support for using abemaciclib to treat resistance in EGFR mutated NSCLC patients progressed to osimertinib either as single treatment or combined with osimertinib, and suggest the combination of osimertinib with abemaciclib as a potential approach to prevent or delay osimertinib resistance in first-line treatment

    Pemetrexed enhances membrane PD-L1 expression and potentiates T cell-mediated cytotoxicity by anti-PD-L1 antibody therapy in non-small-cell lung cancer

    Get PDF
    Immunotherapy has significantly changed the treatment landscape for advanced non-small-cell lung cancer (NSCLC) with the introduction of drugs targeting programmed cell death protein-1 (PD-1) and programmed cell death ligand-1 (PD-L1). In particular, the addition of the anti-PD-1 antibody pembrolizumab to platinum-pemetrexed chemotherapy resulted in a significantly improved overall survival in patients with non-squamous NSCLC, regardless of PD-L1 expression. In this preclinical study, we investigated whether chemotherapy can modulate PD-L1 expression in non-squamous NSCLC cell lines, thus potentially affecting immunotherapy efficacy. Among different chemotherapeutic agents tested, only pemetrexed increased PD-L1 levels by activating both mTOR/P70S6K and STAT3 pathways. Moreover, it also induced the secretion of cytokines, such as IFN-Îł and IL-2, by activated peripheral blood mononuclear cells PBMCs that further stimulated the expression of PD-L1 on tumor cells, as demonstrated in a co-culture system. The anti-PD-1/PD-L1 therapy enhanced T cell-mediated cytotoxicity of NSCLC cells treated with pemetrexed and expressing high levels of PD-L1 in comparison with untreated cells. These data may explain the positive results obtained with pemetrexed-based chemotherapy combined with pembrolizumab in PD-L1-negative NSCLC and can support pemetrexed as one of the preferable chemotherapy partners for immunochemotherapy combination regimens

    Expanding the arsenal of FGFR inhibitors: A novel chloroacetamide derivative as a new irreversible agent with anti-proliferative activity against FGFR1-amplified lung cancer cell lines

    Get PDF
    Fibroblast Growth Factor Receptors (FGFR1-4) have a critical role in the progression of several human cancers, including Squamous Non-Small-Cell Lung Cancer (SQCLC). Both non-selective and selective reversible FGFR inhibitors are under clinical investigation for the treatment of patients with tumors harboring FGFR alterations. Despite their potential efficacy, the clinical development of these drugs has encountered several challenges, including toxicity, and the appearance of drug resistance. Recent efforts have been directed at development of irreversible FGFR inhibitors, which have the potential to exert superior anti-proliferative activity in tumors carrying FGFR alterations. With this in mind, we synthetized, and investigated a set of novel inhibitors possessing a warhead potentially able to covalently bind a cysteine in the P-loop of FGFR. Among them, the chloroacetamide UPR1376 resulted able to irreversible inhibit FGFR1 phosphorylation in FGFR1 over-expressing cells generated from SQCLC SKMES-1 cells. In addition, this compound inhibited cell proliferation in FGFR1-amplified H1581 cells with a potency higher than the reversible inhibitor BGJ398 (infigratinib), while sparing FGFR1 low-expressing cells. The anti-proliferative effects of UPR1376 were demonstrated in both 2D and 3D systems and were associated with the inhibition of MAPK and AKT/mTOR signaling pathways. UPR1376 inhibited cell proliferation also in two BGJ398-resistant cell clones generated from H1581 by chronic exposure to BGJ398, although at concentrations higher than those effective in the parental cells, likely due to the persistent activation of the MAPK pathway associated to NRAS amplification. Combined blockade of FGFR1 and MAPK signaling, by UPR1376 and trametinib respectively, significantly enhanced the efficacy of UPR1376, providing a means of circumventing resistance to FGFR1 inhibition. Our findings suggest that the insertion of a chloroacetamide warhead on a suitable scaffold, as exemplified by UPR1376, is a valuable strategy to develop a novel generation of FGFR inhibitors for the treatment of SQCLC patients with FGFR alterations

    Combined Inhibition of CDK4/6 and PI3K/AKT/mTOR Pathways Induces a Synergistic Anti-Tumor Effect in Malignant Pleural Mesothelioma Cells.

    Get PDF
    Malignant pleural mesothelioma (MPM) is a progressive malignancy associated to the exposure of asbestos fibers. The most frequently inactivated tumor suppressor gene in MPM is CDKN2A/ARF, encoding for the cell cycle inhibitors p16INK4a and p14ARF, deleted in about 70% of MPM cases. Considering the high frequency of alterations of this gene, we tested in MPM cells the efficacy of palbociclib (PD-0332991), a highly selective inhibitor of cyclin-dependent kinase (CDK) 4/6. The analyses were performed on a panel of MPM cell lines and on two primary culture cells from pleural effusion of patients with MPM. All the MPM cell lines, as well as the primary cultures, were sensitive to palbociclib with a significant blockade in G0/G1 phase of the cell cycle and with the acquisition of a senescent phenotype. Palbociclib reduced the phosphorylation levels of CDK6 and Rb, the expression of myc with a concomitant increased phosphorylation of AKT. Based on these results, we tested the efficacy of the combination of palbociclib with the PI3K inhibitors NVP-BEZ235 or NVP-BYL719. After palbociclib treatment, the sequential association with PI3K inhibitors synergistically hampered cell proliferation and strongly increased the percentage of senescent cells. In addition, AKT activation was repressed while p53 and p21 were up-regulated. Interestingly, two cycles of sequential drug administration produced irreversible growth arrest and senescent phenotype that were maintained even after drug withdrawal. These findings suggest that the sequential association of palbociclib with PI3K inhibitors may represent a valuable therapeutic option for the treatment of MPM

    Efficacy and safety of neoadjuvant chemotherapy plus trastuzumab and pertuzumab in non-metastatic HER2-positive breast cancer in real life: NEOPEARL study.

    Get PDF
    Background In HER2+ breast cancer (BC) patients (pts) the pathological complete response (pCR) is associated with improved survival. With regimens based on the combination of trastuzumab (T), pertuzumab (P) and chemotherapy, pCR rates are slightly over 48%. We conducted a retrospective analysis on HER2+ BC pts to describe the outcomes of neoadjuvant combination of P+T and chemotherapy in the real-life setting. Methods Our cohort included 64 pts treated between Sept 2015 and Mar 2018 in 15 Italian Cancer Centers. Treatment outcomes were analyzed in terms of pCR (defined as ypT0/Tis, ypN0i-) and toxicities, recorded according to National Cancer Institute Common Toxicity Criteria. Statistical analysis was performed with T di Student test and χ2 test. Results Overall, in the 55 evaluable pts median age was 50 (range 28-77) and 29 pts (53%) were pre-menopausal. 24 pts (45%) were ER-/PgR-, 12 (21%) ER+/PgR-, 16 (29%) ER+/PgR+, median ki67 was 40. 9% of pts were cT1, 73% cT2, 13% cT3 and 5% cT4; 42 pts (76%) were cN+. All pts received 4 cycles of T (8 mg/kg loading dose, followed by 6 mg/kg every 3 weeks) and P (loading dose 840 mg, followed by 420 mg every 3 weeks). In 42 pts T+P were administered with docetaxel (75 mg/mq every 3 weeks), in 8 pts with paclitaxel (80 mg/mq) and 5 pts received docetaxel and carboplatin (AUC5). In 13 pts also 3 cycles of anthracyclines, according to the FEC scheme, were administered. A pCR was achieved in 29 pts (53%). No significant associations were found between pCR and baseline characteristics or treatments schedule. Seven out of 55 (13%) pts reported G3-G4 toxicities (5 pts neutropenia G3-G4, 1 pt vomiting G3, 1 pt diarrhoea G3, 1 pt anemia G3). Three out of 4 pts treated with docetaxel, carboplatin and P+T reported G3/G4 toxicities. A significant association was found between chemotherapy schedule and toxicities (p = 0.004). Conclusions The association of P+T+chemotherapy improved pCR rate in HER2+ BC pts treated in the real-life setting. Our results showed that the selection of chemotherapy that will be associated with the dual blockade of HER2 is of paramount importance in order to avoid severe toxicities and increase the compliance with treatment

    Pathologic response and survival after neoadjuvant chemotherapy with or without pertuzumab in patients with HER2-positive breast cancer: the Neopearl nationwide collaborative study

    Get PDF
    Purpose: Clinical trials have shown a significant increase in pathologic complete response (pCR) with the addition of pertuzumab to neoadjuvant chemotherapy for patients with early-stage HER-2 positive breast cancer. To date, limited studies have examined comparative outcomes of neoadjuvant pertuzumab in real-world setting. The Neopearl study aimed to assess comparative real-life efficacy and safety of neoadjuvant pertuzumab for these patients. Methods: We conducted a nationwide retrospective analysis involving 17 oncology facilities with a certified multidisciplinary breast cancer treatment committee. We identified patients with HER-2 positive stage II-III breast cancer treated with neoadjuvant chemotherapy based on trastuzumab and taxanes with or without pertuzumab. All patients underwent breast surgery and received a comprehensive cardiologic evaluation at baseline and after neoadjuvant treatment. Patients who received the combination of pertuzumab, trastuzumab, and chemotherapy constituted case cohort (PTCT), whereas those treated with trastuzumab and chemotherapy accounted for control cohort (TCT). The pCR rate and 5-year event free survival (EFS) were the primary outcomes. Secondary end-points were rates of conversion from planned modified radical mastectomy (MRM) to breast conservation surgery (BCS) and cardiotoxicities. Results: From March 2014 to April 2021, we included 271 patients, 134 (49%) and 137 (51%) in TCT and PTCT cohort, respectively. Positive axillary lymph nodes and stage III were more frequent in PTCT cohort. The pCR rate was significantly increased in patients who received pertuzumab (49% vs 62%; OR 1.74, 95%CI 1.04-2.89) and with HER-2 enriched subtypes (16% vs 85%; OR 2.94, 95%CI 1.60-5.41). After a median follow-up of 5 years, the 5-year EFS was significantly prolonged only in patients treated with pertuzumab (81% vs 93%; HR 2.22, 95%CI 1.03-4.79). The same analysis performed on propensity score matched population showed concordant results. On univariate analysis, only patients with positive lymph nodes were found to benefit from pertuzumab for both pCR and 5-year EFS. The rates of conversion from MRM to BCS and cardiologic toxicities did not differ between the cohorts. Conclusion: Our findings support previous data on improved outcomes with the addition of pertuzumab to trastuzumab-based neoadjuvant chemotherapy. This benefit seems to be more significant in patients with clinically positive lymph nodes
    • …
    corecore