4,204 research outputs found
Irrational mode locking in quasiperiodic systems
A model for ac-driven systems, based on the
Tang-Wiesenfeld-Bak-Coppersmith-Littlewood automaton for an elastic medium,
exhibits mode-locked steps with frequencies that are irrational multiples of
the drive frequency, when the pinning is spatially quasiperiodic. Detailed
numerical evidence is presented for the large-system-size convergence of such a
mode-locked step. The irrational mode locking is stable to small thermal noise
and weak disorder. Continuous time models with irrational mode locking and
possible experimental realizations are discussed.Comment: 4 pages, 3 figures, 1 table; revision: 2 figures modified, reference
added, minor clarification
Robust statistics for deterministic and stochastic gravitational waves in non-Gaussian noise I: Frequentist analyses
Gravitational wave detectors will need optimal signal-processing algorithms
to extract weak signals from the detector noise. Most algorithms designed to
date are based on the unrealistic assumption that the detector noise may be
modeled as a stationary Gaussian process. However most experiments exhibit a
non-Gaussian ``tail'' in the probability distribution. This ``excess'' of large
signals can be a troublesome source of false alarms. This article derives an
optimal (in the Neyman-Pearson sense, for weak signals) signal processing
strategy when the detector noise is non-Gaussian and exhibits tail terms. This
strategy is robust, meaning that it is close to optimal for Gaussian noise but
far less sensitive than conventional methods to the excess large events that
form the tail of the distribution. The method is analyzed for two different
signal analysis problems: (i) a known waveform (e.g., a binary inspiral chirp)
and (ii) a stochastic background, which requires a multi-detector signal
processing algorithm. The methods should be easy to implement: they amount to
truncation or clipping of sample values which lie in the outlier part of the
probability distribution.Comment: RevTeX 4, 17 pages, 8 figures, typos corrected from first version
Computing the merger of black-hole binaries: the IBBH problem
Gravitational radiation arising from the inspiral and merger of binary black
holes (BBH's) is a promising candidate for detection by kilometer-scale
interferometric gravitational wave observatories. This paper discusses a
serious obstacle to searches for such radiation and to the interpretation of
any observed waves: the inability of current computational techniques to evolve
a BBH through its last ~10 orbits of inspiral (~100 radians of
gravitational-wave phase). A new set of numerical-relativity techniques is
proposed for solving this ``Intermediate Binary Black Hole'' (IBBH) problem:
(i) numerical evolutions performed in coordinates co-rotating with the BBH, in
which the metric coefficients evolve on the long timescale of inspiral, and
(ii) techniques for mathematically freezing out gravitational degrees of
freedom that are not excited by the waves.Comment: 6 pages RevTe
- …