4,709 research outputs found
Technology research for strapdown inertial experiment and digital flight control and guidance
A helicopter flight-test program to evaluate the performance of Honeywell's Tetrad - a strapdown, laser gyro, inertial navitation system is discussed. The results of 34 flights showed a mean final navigational velocity error of 5.06 knots, with a standard deviation of 3.84 knots; a corresponding mean final position error of 2.66 n.mi., with a standard deviation of 1.48 n.m.; and a modeled mean-position-error growth rate for the 34 tests of 1.96 knots, with a standard deviation of 1.09 knots. Tetrad's four-ring laser gyros provided reliable and accurate angular rate sensing during the test program and on sensor failures were detected during the evaluation. Criteria suitable for investigating cockpit systems in rotorcraft were developed. This criteria led to the development of two basic simulators. The first was a standard simulator which could be used to obtain baseline information for studying pilot workload and interactions. The second was an advanced simulator which integrated the RODAAS developed by Honeywell into this simulator. The second area also included surveying the aerospace industry to determine the level of use and impact of microcomputers and related components on avionics systems
LANDSAT and environmental impact in the Paraiba Valley of Sao Paulo
There are no author-identified significant results in this report
Ab initio parametrised model of strain-dependent solubility of H in alpha-iron
The calculated effects of interstitial hydrogen on the elastic properties of
alpha-iron from our earlier work are used to describe the H interactions with
homogeneous strain fields using ab initio methods. In particular we calculate
the H solublility in Fe subject to hydrostatic, uniaxial, and shear strain. For
comparison, these interactions are parametrised successfully using a simple
model with parameters entirely derived from ab initio methods. The results are
used to predict the solubility of H in spatially-varying elastic strain fields,
representative of realistic dislocations outside their core. We find a strong
directional dependence of the H-dislocation interaction, leading to strong
attraction of H by the axial strain components of edge dislocations and by
screw dislocations oriented along the critical slip direction. We
further find a H concentration enhancement around dislocation cores, consistent
with experimental observations.Comment: part 2/2 from splitting of 1009.3784 (first part was 1102.0187),
minor changes from previous version
Scaling Behaviour and Complexity of the Portevin-Le Chatelier Effect
The plastic deformation of dilute alloys is often accompanied by plastic
instabilities due to dynamic strain aging and dislocation interaction. The
repeated breakaway of dislocations from and their recapture by solute atoms
leads to stress serrations and localized strain in the strain controlled
tensile tests, known as the Portevin-Le Chatelier (PLC) effect. In this present
work, we analyse the stress time series data of the observed PLC effect in the
constant strain rate tensile tests on Al-2.5%Mg alloy for a wide range of
strain rates at room temperature. The scaling behaviour of the PLC effect was
studied using two complementary scaling analysis methods: the finite variance
scaling method and the diffusion entropy analysis. From these analyses we could
establish that in the entire span of strain rates, PLC effect showed Levy walk
property. Moreover, the multiscale entropy analysis is carried out on the
stress time series data observed during the PLC effect to quantify the
complexity of the distinct spatiotemporal dynamical regimes. It is shown that
for the static type C band, the entropy is very low for all the scales compared
to the hopping type B and the propagating type A bands. The results are
interpreted considering the time and length scales relevant to the effect.Comment: 35 pages, 6 figure
A new method for the spectroscopic identification of stellar non-radial pulsation modes. II. Mode identification of the Delta Scuti star FG Virginis
We present a mode identification based on new high-resolution time-series
spectra of the non-radially pulsating Delta Scuti star FG~Vir (HD 106384, V =
6.57, A5V). From 2002 February to June a global Delta Scuti Network (DSN)
campaign, utilizing high-resolution spectroscopy and simultaneous photometry
has been conducted for FG~Vir in order to provide a theoretical pulsation
model. In this campaign we have acquired 969 Echelle spectra covering 147 hours
at six observatories. The mode identification was carried out by analyzing line
profile variations by means of the Fourier parameter fit method, where the
observational Fourier parameters across the line are fitted with theoretical
values. This method is especially well suited for determining the azimuthal
order m of non-radial pulsation modes and thus complementary with the method of
Daszynska-Daszkiewicz (2002) which does best at identifying the degree l. 15
frequencies between 9.2 and 33.5 c/d were detected spectroscopically. We
determined the azimuthal order m of 12 modes and constrained their harmonic
degree l. Only modes of low degree (l <= 4) were detected, most of them having
axisymmetric character mainly due to the relatively low projected rotational
velocity of FG Vir. The detected non-axisymmetric modes have azimuthal orders
between -2 and 1. We derived an inclination of 19 degrees, which implies an
equatorial rotational rate of 66 km/s.Comment: 14 pages, 26 figure
Use of ERTS-1 data to access and monitor change in the west side of the San Joaquin Valley and central coastal zone of California
There are no author-identified significant results in this report
- …
