591 research outputs found

    Quantum noise in optical fibers II: Raman jitter in soliton communications

    Full text link
    The dynamics of a soliton propagating in a single-mode optical fiber with gain, loss, and Raman coupling to thermal phonons is analyzed. Using both soliton perturbation theory and exact numerical techniques, we predict that intrinsic thermal quantum noise from the phonon reservoirs is a larger source of jitter and other perturbations than the gain-related Gordon-Haus noise, for short pulses, assuming typical fiber parameters. The size of the Raman timing jitter is evaluated for both bright and dark (topological) solitons, and is larger for bright solitons. Because Raman thermal quantum noise is a nonlinear, multiplicative noise source, these effects are stronger for the more intense pulses needed to propagate as solitons in the short-pulse regime. Thus Raman noise may place additional limitations on fiber-optical communications and networking using ultrafast (subpicosecond) pulses.Comment: 3 figure

    Quantum noise in optical fibers I: stochastic equations

    Full text link
    We analyze the quantum dynamics of radiation propagating in a single mode optical fiber with dispersion, nonlinearity, and Raman coupling to thermal phonons. We start from a fundamental Hamiltonian that includes the principal known nonlinear effects and quantum noise sources, including linear gain and loss. Both Markovian and frequency-dependent, non-Markovian reservoirs are treated. This allows quantum Langevin equations to be calculated, which have a classical form except for additional quantum noise terms. In practical calculations, it is more useful to transform to Wigner or +PP quasi-probability operator representations. These result in stochastic equations that can be analyzed using perturbation theory or exact numerical techniques. The results have applications to fiber optics communications, networking, and sensor technology.Comment: 1 figur

    Gaussian operator bases for correlated fermions

    Full text link
    We formulate a general multi-mode Gaussian operator basis for fermions, to enable a positive phase-space representation of correlated Fermi states. The Gaussian basis extends existing bosonic phase-space methods to Fermi systems and thus enables first-principles dynamical or equilibrium calculations in quantum many-body Fermi systems. We prove the completeness and positivity of the basis, and derive differential forms for products with one- and two-body operators. Because the basis satisfies fermionic superselection rules, the resulting phase space involves only c-numbers, without requiring anti-commuting Grassmann variables

    Stochastic gauge: a new technique for quantum simulations

    Full text link
    We review progress towards direct simulation of quantum dynamics in many-body systems, using recently developed stochastic gauge techniques. We consider master equations, canonical ensemble calculations and reversible quantum dynamics are compared, as well the general question of strategies for choosing the gauge.Comment: 11 pages, 2 figures, to be published in Proceedings of the 16th International Conference on Laser Spectroscopy (ICOLS), Palm Cove, Australia (2003

    Quantum optical waveform conversion

    Full text link
    Currently proposed architectures for long-distance quantum communication rely on networks of quantum processors connected by optical communications channels [1,2]. The key resource for such networks is the entanglement of matter-based quantum systems with quantum optical fields for information transmission. The optical interaction bandwidth of these material systems is a tiny fraction of that available for optical communication, and the temporal shape of the quantum optical output pulse is often poorly suited for long-distance transmission. Here we demonstrate that nonlinear mixing of a quantum light pulse with a spectrally tailored classical field can compress the quantum pulse by more than a factor of 100 and flexibly reshape its temporal waveform, while preserving all quantum properties, including entanglement. Waveform conversion can be used with heralded arrays of quantum light emitters to enable quantum communication at the full data rate of optical telecommunications.Comment: submitte

    Gaussian quantum Monte Carlo methods for fermions

    Get PDF
    We introduce a new class of quantum Monte Carlo methods, based on a Gaussian quantum operator representation of fermionic states. The methods enable first-principles dynamical or equilibrium calculations in many-body Fermi systems, and, combined with the existing Gaussian representation for bosons, provide a unified method of simulating Bose-Fermi systems. As an application, we calculate finite-temperature properties of the two dimensional Hubbard model.Comment: 4 pages, 3 figures, Revised version has expanded discussion, simplified mathematical presentation, and application to 2D Hubbard mode

    First-principles quantum dynamics for fermions: Application to molecular dissociation

    Full text link
    We demonstrate that the quantum dynamics of a many-body Fermi-Bose system can be simulated using a Gaussian phase-space representation method. In particular, we consider the application of the mixed fermion-boson model to ultracold quantum gases and simulate the dynamics of dissociation of a Bose-Einstein condensate of bosonic dimers into pairs of fermionic atoms. We quantify deviations of atom-atom pair correlations from Wick's factorization scheme, and show that atom-molecule and molecule-molecule correlations grow with time, in clear departures from pairing mean-field theories. As a first-principles approach, the method provides benchmarking of approximate approaches and can be used to validate dynamical probes for characterizing strongly correlated phases of fermionic systems.Comment: Final published versio
    • …
    corecore