139 research outputs found

    Response of electrically coupled spiking neurons: a cellular automaton approach

    Full text link
    Experimental data suggest that some classes of spiking neurons in the first layers of sensory systems are electrically coupled via gap junctions or ephaptic interactions. When the electrical coupling is removed, the response function (firing rate {\it vs.} stimulus intensity) of the uncoupled neurons typically shows a decrease in dynamic range and sensitivity. In order to assess the effect of electrical coupling in the sensory periphery, we calculate the response to a Poisson stimulus of a chain of excitable neurons modeled by nn-state Greenberg-Hastings cellular automata in two approximation levels. The single-site mean field approximation is shown to give poor results, failing to predict the absorbing state of the lattice, while the results for the pair approximation are in good agreement with computer simulations in the whole stimulus range. In particular, the dynamic range is substantially enlarged due to the propagation of excitable waves, which suggests a functional role for lateral electrical coupling. For probabilistic spike propagation the Hill exponent of the response function is α=1\alpha=1, while for deterministic spike propagation we obtain α=1/2\alpha=1/2, which is close to the experimental values of the psychophysical Stevens exponents for odor and light intensities. Our calculations are in qualitative agreement with experimental response functions of ganglion cells in the mammalian retina.Comment: 11 pages, 8 figures, to appear in the Phys. Rev.

    Physics of Psychophysics: Stevens and Weber-Fechner laws are transfer functions of excitable media

    Full text link
    Sensory arrays made of coupled excitable elements can improve both their input sensitivity and dynamic range due to collective non-linear wave properties. This mechanism is studied in a neural network of electrically coupled (e.g. via gap junctions) elements subject to a Poisson signal process. The network response interpolates between a Weber-Fechner logarithmic law and a Stevens power law depending on the relative refractory period of the cell. Therefore, these non-linear transformations of the input level could be performed in the sensory periphery simply due to a basic property: the transfer function of excitable media.Comment: 4 pages, 5 figure

    Scaling law for the transient behavior of type-II neuron models

    Full text link
    We study the transient regime of type-II biophysical neuron models and determine the scaling behavior of relaxation times τ\tau near but below the repetitive firing critical current, τC(IcI)Δ\tau \simeq C (I_c-I)^{-\Delta}. For both the Hodgkin-Huxley and Morris-Lecar models we find that the critical exponent is independent of the numerical integration time step and that both systems belong to the same universality class, with Δ=1/2\Delta = 1/2. For appropriately chosen parameters, the FitzHugh-Nagumo model presents the same generic transient behavior, but the critical region is significantly smaller. We propose an experiment that may reveal nontrivial critical exponents in the squid axon.Comment: 6 pages, 9 figures, accepted for publication in Phys. Rev.

    Functional Optimisation of Online Algorithms in Multilayer Neural Networks

    Full text link
    We study the online dynamics of learning in fully connected soft committee machines in the student-teacher scenario. The locally optimal modulation function, which determines the learning algorithm, is obtained from a variational argument in such a manner as to maximise the average generalisation error decay per example. Simulations results for the resulting algorithm are presented for a few cases. The symmetric phase plateaux are found to be vastly reduced in comparison to those found when online backpropagation algorithms are used. A discussion of the implementation of these ideas as practical algorithms is given

    Storage capacity of correlated perceptrons

    Full text link
    We consider an ensemble of KK single-layer perceptrons exposed to random inputs and investigate the conditions under which the couplings of these perceptrons can be chosen such that prescribed correlations between the outputs occur. A general formalism is introduced using a multi-perceptron costfunction that allows to determine the maximal number of random inputs as a function of the desired values of the correlations. Replica-symmetric results for K=2K=2 and K=3K=3 are compared with properties of two-layer networks of tree-structure and fixed Boolean function between hidden units and output. The results show which correlations in the hidden layer of multi-layer neural networks are crucial for the value of the storage capacity.Comment: 16 pages, Latex2

    Functional Optimization in Complex Excitable Networks

    Full text link
    We study the effect of varying wiring in excitable random networks in which connection weights change with activity to mold local resistance or facilitation due to fatigue. Dynamic attractors, corresponding to patterns of activity, are then easily destabilized according to three main modes, including one in which the activity shows chaotic hopping among the patterns. We describe phase transitions to this regime, and show a monotonous dependence of critical parameters on the heterogeneity of the wiring distribution. Such correlation between topology and functionality implies, in particular, that tasks which require unstable behavior --such as pattern recognition, family discrimination and categorization-- can be most efficiently performed on highly heterogeneous networks. It also follows a possible explanation for the abundance in nature of scale--free network topologies.Comment: 7 pages, 3 figure

    Phase-Induced (In)-Stability in Coupled Parametric Oscillators

    Full text link
    We report results on a model of two coupled oscillators that undergo periodic parametric modulations with a phase difference θ\theta. Being to a large extent analytically solvable, the model reveals a rich θ\theta dependence of the regions of parametric resonance. In particular, the intuitive notion that anti-phase modulations are less prone to parametric resonance is confirmed for sufficiently large coupling and damping. We also compare our results to a recently reported mean field model of collective parametric instability, showing that the two-oscillator model can capture much of the qualitative behavior of the infinite system.Comment: 19 pages, 8 figures; a version with better quality figures can be found in http://hypatia.ucsd.edu/~mauro/English/publications.htm

    Retarded Learning: Rigorous Results from Statistical Mechanics

    Full text link
    We study learning of probability distributions characterized by an unknown symmetry direction. Based on an entropic performance measure and the variational method of statistical mechanics we develop exact upper and lower bounds on the scaled critical number of examples below which learning of the direction is impossible. The asymptotic tightness of the bounds suggests an asymptotically optimal method for learning nonsmooth distributions.Comment: 8 pages, 1 figur

    Fast relational learning using bottom clause propositionalization with artificial neural networks

    Get PDF
    Relational learning can be described as the task of learning first-order logic rules from examples. It has enabled a number of new machine learning applications, e.g. graph mining and link analysis. Inductive Logic Programming (ILP) performs relational learning either directly by manipulating first-order rules or through propositionalization, which translates the relational task into an attribute-value learning task by representing subsets of relations as features. In this paper, we introduce a fast method and system for relational learning based on a novel propositionalization called Bottom Clause Propositionalization (BCP). Bottom clauses are boundaries in the hypothesis search space used by ILP systems Progol and Aleph. Bottom clauses carry semantic meaning and can be mapped directly onto numerical vectors, simplifying the feature extraction process. We have integrated BCP with a well-known neural-symbolic system, C-IL2P, to perform learning from numerical vectors. C-IL2P uses background knowledge in the form of propositional logic programs to build a neural network. The integrated system, which we call CILP++, handles first-order logic knowledge and is available for download from Sourceforge. We have evaluated CILP++ on seven ILP datasets, comparing results with Aleph and a well-known propositionalization method, RSD. The results show that CILP++ can achieve accuracy comparable to Aleph, while being generally faster, BCP achieved statistically significant improvement in accuracy in comparison with RSD when running with a neural network, but BCP and RSD perform similarly when running with C4.5. We have also extended CILP++ to include a statistical feature selection method, mRMR, with preliminary results indicating that a reduction of more than 90 % of features can be achieved with a small loss of accuracy
    corecore