2,330 research outputs found

    Polarization of Astronomical Maser Radiation. IV. Circular Polarization Profiles

    Get PDF
    Profile comparison of the Stokes parameters VV and II is a powerful tool for maser data analysis, providing the first direct methods for unambiguous determination of (1) the maser saturation stage, (2) the amplification optical depth and intrinsic Doppler width of unsaturated masers, and (3) the comparative magnitudes of Zeeman splitting and Doppler linewidth. Circular polarization recently detected in OH 1720 MHz emission from the Galactic center appears to provide the first direct evidence for maser saturation.Comment: 14 pages, 1 Postscript figures (included), uses aaspp4.sty. To appear in Astrophysical Journa

    The Sizes of 1720 MHz OH Masers: VLBA and MERLIN Observations of the Supernova Remnants W44 and W28

    Get PDF
    We have used the NRAO Very Long Baseline Array (VLBA) to image OH(1720 MHz) masers in the supernova remnants W28 and W44 at a resolution of 40 mas. We also used MERLIN to observe the same OH(1720 MHz) masers in W44 at a resolution of 290 x 165 mas. All the masers are resolved by these VLBA and MERLIN observations. The measured sizes range from 50 to 180 mas and yield brightness temperature estimates from 0.3--20 x 10**8 K. We investigate whether these measured angular sizes are intrinsic and hence originate as a result of the physical conditions in the supernova remnant shock, or whether they are scatter broadened sizes produced by the turbulent ionized gas along the line of sight. While the current data on the temporal and angular broadening of pulsars, masers and extragalactic soures toward W44 and W28 can be understood in terms of scattering, we cannot rule out that these large sizes are intrinsic. Recent theoretical modeling by Lockett et al. suggests that the physical parameters in the shocked region are indicative of densities and OH abundances which lead to estimates of sizes as large as what we measure. If the sizes and structure are intrinsic, then the OH(1720 MHz) masrs may be more like the OH(1612 MHz) masers in circumstellar shells than OH masers associated with HII regions. At two locations in W28 we observe the classical S-shapes in the Stokes V profiles caused by Zeeman splitting and use it to infer magnetic fields of order 2 milliGauss.Comment: 24 pages, 6 figures, accepted by Ap

    Ground-State SiO Maser Emission Toward Evolved Stars

    Full text link
    We have made the first unambiguous detection of vibrational ground-state maser emission from SiO toward six evolved stars. Using the Very Large Array, we simultaneously observed the v=0, J=1-0, 43.4-GHz, ground-state and the v=1, J=1-0, 43.1-GHz, first excited-state transitions of SiO toward the oxygen-rich evolved stars IRC+10011, o Ceti, W Hya, RX Boo, NML Cyg, and R Cas and the S-type star chi Cyg. We detected at least one v=0 SiO maser feature from six of the seven stars observed, with peak maser brightness temperatures ranging from 10,000 K to 108,800 K. In fact, four of the seven v=0 spectra show multiple maser peaks, a phenomenon which has not been previously observed. Ground-state thermal emission was detected for one of the stars, RX Boo, with a peak brightness temperature of 200 K. Comparing the v=0 and the v=1 transitions, we find that the ground-state masers are much weaker with spectral characteristics different from those of the first excited-state masers. For four of the seven stars the velocity dispersion is smaller for the v=0 emission than for the v=1 emission, for one star the dispersions are roughly equivalent, and for two stars (one of which is RX Boo) the velocity spread of the v=0 emission is larger. In most cases, the peak flux density in the v=0 emission spectrum does not coincide with the v=1 maser peak. Although the angular resolution of these VLA observations were insufficient to completely resolve the spatial structure of the SiO emission, the SiO spot maps produced from the interferometric image cubes suggest that the v=0 masers are more extended than their v=1 counterparts

    Astrometric Positions and Proper Motions of 19 Radio Stars

    Full text link
    We have used the Very Large Array, linked with the Pie Town Very Long Baseline Array antenna, to determine astrometric positions of 19 radio stars in the International Celestial Reference Frame (ICRF). The positions of these stars were directly linked to the positions of distant quasars through phase referencing observations. The positions of the ICRF quasars are known to 0.25 mas, thus providing an absolute reference at the angular resolution of our radio observations. Average values for the errors in our derived positions for all sources were 13 mas and 16 mas in R.A. and declination respectively, with accuracies approaching 1-2 mas for some of the stars observed. Differences between the ICRF positions of the 38 quasars, and those measured from our observations showed no systematic offsets, with mean values of -0.3 mas in R.A. and -1.0 mas in declination. Standard deviations of the quasar position differences of 17 mas and 11 mas in R.A. and declination respectively, are consistent with the mean position errors determined for the stars. Our measured positions were combined with previous Very Large Array measurements taken from 1978-1995 to determine the proper motions of 15 of the stars in our list. With mean errors of approximately 1.6 mas/yr, the accuracies of our proper motions approach those derived from Hipparcos, and for a few of the stars in our program, are better than the Hipparcos values. Comparing the positions of our radio stars with the Hipparcos catalog, we find that at the epoch of our observations, the two frames are aligned to within formal errors of approximately 3 mas. This result confirms that the Hipparcos frame is inertial at the expected level.Comment: 20 pages, 9 figures Accepted by the Astronomical Journal, 2003 March 1

    Weak and Compact Radio Emission in Early High-Mass Star Forming Regions: I. VLA Observations

    Get PDF
    We present a high sensitivity radio continuum survey at 6 and 1.3\,cm using the Karl G. Jansky Very Large Array towards a sample of 58 high-mass star forming regions. Our sample was chosen from dust clumps within infrared dark clouds with and without IR sources (CMC-IRs, CMCs, respectively), and hot molecular cores (HMCs), with no previous, or relatively weak radio continuum detection at the 11\,mJy level. Due to the improvement in the continuum sensitivity of the VLA, this survey achieved map rms levels of \sim 3-10 μ\muJy beam1^{-1} at sub-arcsecond angular resolution. We extracted 70 centimeter continuum sources associated with 1.2\,mm dust clumps. Most sources are weak, compact, and are prime candidates for high-mass protostars. Detection rates of radio sources associated with the mm dust clumps for CMCs, CMC-IRs and HMCs are 6%\%, 53%\% and 100%\%, respectively. This result is consistent with increasing high-mass star formation activity from CMCs to HMCs. The radio sources located within HMCs and CMC-IRs occur close to the dust clump centers with a median offset from it of 12,000\,AU and 4,000\,AU, respectively. We calculated 5 - 25\,GHz spectral indices using power law fits and obtain a median value of 0.5 (i.e., flux increasing with frequency), suggestive of thermal emission from ionized jets. In this paper we describe the sample, observations, and detections. The analysis and discussion will be presented in Paper II.Comment: Accepted for publication in the ApJ
    corecore