3,461 research outputs found

    Fuzzy changes-in-changes

    Get PDF

    Black branes on the linear dilaton background

    Full text link
    We show that the complete static black p-brane supergravity solution with a single charge contains two and only two branches with respect to behavior at infinity in the transverse space. One branch is the standard family of asymptotically flat black branes, and another is the family of black branes which asymptotically approach the linear dilaton background with antisymmetric form flux (LDB). Such configurations were previously obtained in the near-horizon near-extreme limit of the dilatonic asymptotically flat p-branes, and used to describe the thermal phase of field theories involved in the DW/QFT dualities and the thermodynamics of little string theory in the case of the NS5-brane. Here we show by direct integration of the Einstein equations that the asymptotically LDB p-branes are indeed exact supergravity solutions, and we prove a new uniqueness theorem for static p-brane solutions satisfying cosmic censorship. In the non-dilatonic case, our general non-asymptotically flat p-branes are uncharged black branes on the background AdSp+2×SD−p−2AdS_{p+2}\times S^{D-p-2} supported by the form flux. We develop the general formalism of quasilocal quantities for non-asymptotically flat supergravity solutions with antisymmetric form fields, and show that our solutions satisfy the first law of theormodynamics. We also suggest a constructive procedure to derive rotating asymptotically LDB brane solutions.Comment: 16 pages, revtex4, v2 - references added, "authors" metatag correcte

    Hidden symmetry of the three-dimensional Einstein-Maxwell equations

    Get PDF
    It is shown how to generate three-dimensional Einstein-Maxwell fields from known ones in the presence of a hypersurface-orthogonal non-null Killing vector field. The continuous symmetry group is isomorphic to the Heisenberg group including the Harrison-type transformation. The symmetry of the Einstein-Maxwell-dilaton system is also studied and it is shown that there is the SL(2,R)SL(2,{\bf R}) transformation between the Maxwell and the dilaton fields. This SL(2,R)SL(2,{\bf R}) transformation is identified with the Geroch transformation of the four-dimensional vacuum Einstein equation in terms of the Ka{\l}uza-Klein mechanism.Comment: 5 page

    Micro-Brillouin spectroscopy mapping of the residual density field induced by Vickers indentation in a soda-lime silicate glass

    Full text link
    High-resolution Brillouin scattering is used to achieve 3-dimensional maps of the longitudinal acoustic mode frequency shift in soda-lime silicate glasses subject to Vickers indentations. Assuming that residual stress-induced effects are simply proportional to density changes, residual densification fields are obtained. The density gradient is nearly isotropic, confirming earlier optical observations made on a similar glass. The results show that Brillouin micro-spectroscopy opens the way to a fully quantitative comparison of experimental data with predictions of mechanical models for the identification of a constitutive law.Comment: 4 pages, 3 figures, revised version, to appear in Appl. Phys. Let

    Density modulations in an elongated Bose-Einstein condensate released from a disordered potential

    Full text link
    We observe large density modulations in time-of-flight images of elongated Bose-Einstein condensates, initially confined in a harmonic trap and in the presence of weak disorder. The development of these modulations during the time-of-flight and their dependence with the disorder are investigated. We render an account of this effect using numerical and analytical calculations. We conclude that the observed large density modulations originate from the weak initial density modulations induced by the disorder, and not from initial phase fluctuations (thermal or quantum).Comment: Published version; 4+ pages; 4 figure

    Multi-Black-Holes in Three Dimensions

    Full text link
    We construct time-dependent multi-centre solutions to three-dimensional general relativity with zero or negative cosmological constant. These solutions correspond to dynamical systems of freely falling black holes and conical singularities, with a multiply connected spacetime topology. Stationary multi-black-hole solutions are possible only in the extreme black hole case.Comment: 8 pages, \LaTex, 4 figures (available on request), GCR 94/02/0

    Wormhole cosmic strings

    Full text link
    We construct regular multi-wormhole solutions to a gravitating σ\sigma model in three space-time dimensions, and extend these solutions to cylindrical traversable wormholes in four and five dimensions. We then discuss the possibility of identifying wormhole mouths in pairs to give rise to Wheeler wormholes. Such an identification is consistent with the original field equations only in the absence of the σ\sigma-model source, but with possible naked cosmic string sources. The resulting Wheeler wormhole space-times are flat outside the sources and may be asymptotically Minkowskian.Comment: 17 pages, LaTeX, 4 figures (hard copy available on request

    Black hole mass and angular momentum in 2+1 gravity

    Get PDF
    We propose a new definition for the mass and angular momentum of neutral or electrically charged black holes in 2+1 gravity with two Killing vectors. These finite conserved quantities, associated with the SL(2,R) invariance of the reduced mechanical system, are shown to be identical to the quasilocal conserved quantities for an improved gravitational action corresponding to mixed boundary conditions. They obey a general Smarr-like formula and, in all cases investigated, are consistent with the first law of black hole thermodynamics. Our framework is applied to the computation of the mass and angular momentum of black hole solutions to several field-theoretical models.Comment: 23 pages, 3 references added, to be published in Physical Review

    Ring Wormholes in D-Dimensional Einstein and Dilaton Gravity

    Get PDF
    On the basis of exact solutions to the Einstein-Abelian gauge-dilaton equations in DD-dimensional gravity, the properties of static axial configurations are discussed. Solutions free of curvature singularities are selected; they can be attributed to traversible wormholes with cosmic string-like singularities at their necks. In the presence of an electromagnetic field some of these wormholes are globally regular, the string-like singularity being replaced by a set of twofold branching points. Consequences of wormhole regularity and symmetry conditions are discussed. In particular, it is shown that (i) regular, symmetric wormholes have necessarily positive masses as viewed from both asymptotics and (ii) their characteristic length scale in the big charge limit (GM2â‰ȘQ2GM^2 \ll Q^2) is of the order of the ``classical radius" Q2/MQ^2/M.Comment: Latex file, 15 page
    • 

    corecore