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Abstract

The changes-in-changes model extends the widely used di�erence-in-di�erences to situ-

ations where outcomes may evolve heterogeneously. Contrary to di�erence-in-di�erences,

this model is invariant to the scaling of the outcome. This paper develops an instrumen-

tal variable changes-in-changes model, to allow for situations in which perfect control and

treatment groups cannot be de�ned, so that some units may be treated in the �control

group�, while some units may remain untreated in the �treatment group�. This is the case

for instance with repeated cross sections, if the treatment is not tied to a strict rule. Under

a mild strengthening of the changes-in-changes model, treatment e�ects in a population

of compliers are point identi�ed when the treatment rate does not change in the control

group, and partially identi�ed otherwise. Simple plug-in estimators of treatment e�ects

are proposed. We show that they are asymptotically normal, and that the bootstrap is

valid. Finally, we use our results to reanalyze �ndings in Field (2007) and Du�o (2001).
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1 Introduction

Di�erence-in-di�erences (DID) is one of the most popular methods for evaluating the e�ect of

a treatment in the absence of experimental data. It exploits a temporal change in treatment

allocation, for instance following a legislative change. In its basic version, a �control group�

is untreated at two dates, whereas a �treatment group� becomes treated at the second date.

If the e�ect of time is the same in both groups, the so-called common trend assumption, one

can measure the e�ect of the treatment on the treated by comparing the evolution of the

outcome in both groups. DID only require repeated cross section data, not necessarily panel

data, which may explain why this method is so pervasive.

Notwithstanding, the common trend assumption raises a number of concerns. If the control

and treatment groups are di�erent and the e�ect of time is heterogenous, the common trend

condition is unlikely to hold. Suppose for instance that one studies the e�ect of job training on

wages, using data where low-wage workers bene�t from job training after a given date. If high

wages increase more on average than low wages during the period at stake, the common trend

assumption fails to hold. Besides, the common trend assumption is not invariant to monotonic

transformations of the outcome. As shown by Athey & Imbens (2002), this assumption requires

that the e�ect of time and group on the outcome be additively separable, which cannot be true

for both the outcome and its logarithm. This leads to the logs versus levels problem: when

considering the level of the outcome or its growth rate, treatment e�ects estimated through

DID may considerably change. For instance, Meyer et al. (1995) �nd no signi�cant e�ect of

injury bene�ts on injury duration, while they �nd strong e�ects on the logarithm of injury

duration.

To deal with this problem, Athey & Imbens (2006) consider a nonlinear extension of di�erence-

in-di�erences, the changes-in-changes (CIC) model.1 It relies on the assumption that a control

and a treatment unit with the same outcome at the �rst period would also have had the same

outcome at the second period if the treatment unit had then not been treated. Hereafter,

we refer to this condition as the common change assumption. This condition allows for het-

erogeneous e�ects of time: people with di�erent outcomes at the �rst period can experience

di�erent evolutions over time. And contrary to the common trend assumption, the common

change assumption is invariant to monotonic transforms of potential outcomes.

In this paper, we develop a framework that extends the CIC model to fuzzy situations in which

the treatment rate increases more in one group than in the other. Many natural experiments

1Their estimator is closely related to an estimator proposed by Juhn et al. (1993) and Altonji & Blank

(2000) to decompose the Black-White wage di�erential into changes in the returns to skills and changes in the

relative skill distribution.
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cannot be analyzed within the standard DID or CIC framework. They do not lead to a sharp

change in treatment rate for any group de�ned by a set of observable characteristics, but only

to a larger increase of the treatment rate in some groups than in others. With panel data

at hand, the analyst could de�ne the treatment group as units going from non treatment

to treatment between the two periods, while the control group could be made up of units

remaining untreated at the two periods. But this de�nition of groups would be endogeneous,

and might violate the common trend assumption. Units choosing to go from non treatment

to treatment between the two periods might do so because they experience di�erent trends in

outcomes.

In such settings, the standard practice is to use linear instrumental variable (IV) regressions to

estimate treatment e�ects. A good example is Du�o (2001). She considers a school construc-

tion program in Indonesia which led to the construction of more schools in districts where few

schools were previously available. She de�nes control districts as those in which many schools

were already available previous to the program, while treatment districts are those in which

few schools were available. Because more schools were constructed in treatment districts,

years of schooling increased more in those districts. The author then estimates returns to

schooling through an IV regression in which time and group �xed e�ects are used as included

instruments for treatment, while the excluded instrument is the interaction of time and group.

The resulting coe�cient for treatment in this �IV-DID� regression is the ratio of the DID on

the outcome and on treatment, which is sometimes referred to as the Wald-DID. Similarly,

Lochner & Moretti (2004) use state compulsory laws as an instrument for schooling. They

also estimate IV regressions with time and group �xed e�ects as included instruments, so their

coe�cient of interest is a weighted average of Wald-DID across groups and periods of time.

Other examples include Burgess & Pande (2005), Field (2007), or Akerman et al. (2013), who

estimate similar type of IV regressions as in Lochner & Moretti (2004).

de Chaisemartin (2013) studies the conditions under which these IV-DID regressions capture

some treatment e�ect parameter. He �rst considers a simple model with constant e�ect of time

in which the e�ect of the treatment can be heterogeneous across groups but is homogeneous

within groups. Identi�cation by IV-DID can fail in this model. Assume for instance that the

e�ect of the treatment is strictly positive in the two groups and twice as large in the control

than in the treatment group. Assume also that the treatment rate increased twice as much

in the treatment than in the control group. Then, the Wald-DID will be equal to 0: the

lower increase of the treatment rate in the control group is exactly compensated by the fact

that the e�ect of the treatment is higher in this group. The Wald-DID does not capture the

e�ect of the treatment in any of the two groups, or a weighted average of the two. Therefore,
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in this simple model, identi�cation by IV-DID requires that the e�ect of the treatment be

the same across groups. He then shows that this result carries to more general models with

heterogeneous e�ects. In those models, identi�cation by IV-DID requires standard common

trend assumptions, but it also requires that the average e�ect of the treatment be the same in

the treatment and in the control groups, at least among observations who switch treatment

status over time.

To circumvent these shortcomings, we study an instrumental variable changes-in-changes (IV-

CIC) model which does not require common trend assumptions, is invariant to monotonic

transforms of the outcome, and does not impose that some subgroups of observations in the

treatment and in the control groups have the same treatment e�ects. Our model combines

both an increasing production function for the outcome, as in Athey & Imbens (2006), and

a latent index model for treatment choice in the spirit of Vytlacil (2002). Relative to Athey

& Imbens (2006), the main supplementary ingredient we impose is a strengthening of the

common change assumption. Formally, we impose that both potential outcomes and the

propensity to be treated satisfy the common change assumption. Importantly, this allows for

endogenous selection, including Roy models where potential outcomes evolve heterogeneously.

In this framework, we show that the marginal distributions of potential outcomes for compliers

are point identi�ed if the treatment rate remains constant in the control group, and partially

identi�ed otherwise. The intuition for this result goes as follows. When the treatment rate is

constant in the control group, any change in the distribution of the outcome of this group can

be attributed to time. By the common change assumption, time has the same e�ect in both

groups among individuals with the same outcome. We can therefore use the control group

to identify the e�ect of time, and remove this e�ect in the treatment group. Any remaining

change in the distribution of the outcome in the treatment group can then be attributed to

the increase in treatment rate it experienced over time. Thus, the marginal distributions of

potential outcomes for compliers are identi�ed. But when the treatment rate is not constant

in the control group, the evolution of the outcome in this group may stem both from the

e�ect of time and from the change in the treatment rate. Therefore, the e�ect of time is only

partially identi�ed, which in turn implies that the marginal distributions of potential outcomes

for compliers are partially identi�ed as well. We exhibit bounds on these distributions, and

show that they are sharp under testable monotonicity conditions. The smaller the change of

the treatment rate in the control group, the tighter the bounds.

We then consider three extensions of those main results. Firstly, we show how to incorporate

covariates in the analysis. Secondly, we show how to extend our analysis to settings with

many time periods and many groups. Having many groups might allow recovering point
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identi�cation: the more groups there are, the more likely it is that the treatment rate does

not change in at least one of them. Thirdly, we show that our IV-CIC model is testable.

When it is point identi�ed, its testable implication is very similar to the testable implication

of the IV model with binary treatment and instrument in Angrist et al. (1996), which has

been studied by Kitagawa (2013). But when the model is partially identi�ed, its testable

implication takes a di�erent form.

We also develop inference on average and quantile treatment e�ects. Using the functional delta

method, we show that simple plug-in estimators of treatment e�ects in the fully identi�ed

case, and of the bounds in the partially identi�ed one, are asymptotically normal under mild

conditions. Because the variance takes a complicated form, the bootstrap is convenient to use

here, and we prove that it is consistent.

Finally, we apply our results to two di�erent data sets. We �rst revisit Field (2007), who

studies the e�ect of granting property titles to urban squatters on their labor supply. As the

treatment rate is stable in the comparison group used by the author, we are in the point iden-

ti�ed case. Our IV-CIC model allows us to study distributional e�ects of the treatment which

were not studied by the author. We show that property rights have a stronger relative e�ect

on households with a low initial labor supply. A possible explanation is that among squat-

ters, only one household member has to stay home to look after the household's residence,

irrespective of the household size. The e�ect of the program would then be large for small

households with low initial labor supply, and smaller otherwise. Knowing this pattern of het-

erogeneity might have substantial consequences on social choice. A utilitarian social planner

will indeed be more prone to implementing a titling program with heterogeneous than with

constant relative e�ects, provided utility of agents is concave in individual consumption. We

then revisit results in Du�o (2001) on returns to education. As the treatment rate changes in

the comparison group used by the author, we are in the partially identi�ed case. Our bounds

are wide and uninformative, because the treatment rate increased substantially in the control

group. Our IV-CIC model does not allow us to draw informative conclusions on returns to

education from this natural experiment.

Our paper therefore shows that in fuzzy settings, researchers must �nd a control group in

which the treatment rate is stable over time to point identify treatment e�ects under our non

linear IV-CIC model. This will be possible to achieve when a group is excluded from treatment

at both dates. This might also be possible to achieve when a policy is extended to a previously

ineligible group, or when a program or a technology previously available in some geographic

areas is extended to others (see e.g. Field, 2007, or Akerman et al., 2013). When the treatment

rate slightly changes in the control group, researchers can still derive informative bounds for
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treatment e�ects, as we show in a third application developed in Appendix C. When exposition

to treatment substantially changes in the control group as well, using our IV-CIC model will

result in wide and uninformative bounds. In such instances, point identi�cation can still be

achieved using IV-DID, but at the price of imposing more stringent conditions.

Besides Athey & Imbens (2006), our paper is related to D'Haultfoeuille et al. (2013), who

study the possibly nonlinear e�ects of a continuous treatment using repeated cross sections.

They also rely on a control group to identify the e�ect of time, but in their case the choice of

this group is driven by the data. Our paper is also connected to several recent papers analyzing

di�erence-in-di�erences models. de Chaisemartin (2013) studies the identifying assumptions

underlying IV-DID regressions. Several recent papers have also considered di�erent routes

from the one taken in Athey & Imbens (2006) to weaken the common trend condition in

�sharp� DID. Blundell et al. (2004) and Abadie (2005) consider a conditional version of this

assumption, and adjust for covariates using propensity score methods. Donald & Lang (2007)

and Manski & Pepper (2012) allow for some variations in the way time a�ects the control and

treatment groups, provided these variations satisfy some restrictions. Bonhomme & Sauder

(2011) consider a linear model allowing for heterogeneous e�ects of time, and show how it can

be identi�ed using an instrument.

The remainder of the paper is organized as follows. Section 2 presents our model. Section 3 is

devoted to identi�cation. Section 4 presents some extensions. Section 5 deals with inference.

In section 6 we apply our results to the two aforementioned data sets. Section 7 concludes.

The appendix gathers all the proofs, some technical lemmas and a third application on the

e�ect of a pharmacotherapy on smoking cessation.

2 The instrumental variable Changes-in-Changes model

Let T ∈ {0; 1} denote time and G denote the dummy of the treatment group (so that G = 0

for the control group). The treatment D is supposed to be binary. Hereafter, for any random

variables R and S, R ∼ S means that R and S have the same probability distribution. S(R)

and S(R|S) denote respectively the support of R and the support of R conditional on S. As

Athey & Imbens (2006), we introduce for any random variable R the corresponding random

variables Rgt such that

Rgt ∼ R|G = g, T = t.

Let FR and FR|S denote the cumulative distribution function (cdf) of R and its cdf conditional

on S. For any event A, FR|A is the cdf of R conditional on A. With a slight abuse of notation,

P (A)FR|A should be understood as 0 when P (A) = 0. For any increasing function F on the
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real line, we denote by F−1 its generalized inverse:

F−1(q) = inf {x ∈ R/F (x) ≥ q} .

In particular, F−1
X is the quantile function of X. We adopt the convention that F−1

X (q) =

inf S(X) for q < 0, and F−1
X (q) = supS(X) for q > 1.

In our IV-CIC model, D 6= G× T in general. Some units may be treated in the control group

or at period 0, and all units are not necessarily treated in the treatment group at period 1.

This will arise when repeated cross sections are available, and the treatment is not tied to a

strict rule. In such instances, it is not possible to know whether units at the second period

were treated in the �rst period, and we cannot de�ne a control group that was completely

untreated in the �rst period. When panel data are available, it may not be desirable to

de�ne the treatment group as units going from non treatment to treatment, and the control

group as units untreated at both periods. With this de�nition of groups, the assumptions

underlying both the changes-in-changes model and the di�erence-in-di�erences model will be

violated if individuals become treated because of an Ashenfelter's dip. De�ning the control

and treatment groups in an exogenous way usually makes the identifying assumption more

credible. We let λd = P (D01 = d)/P (D00 = d) be the ratio of the shares of people receiving

treatment d in period 1 and period 0 in the control group. For instance, λ0 > 1 when the

share of untreated observations increases in the control group between period 0 and 1. λ0 > 1

implies that λ1 < 1 and conversely. µd = P (D11 = d)/P (D10 = d) is the equivalent of λd for

the treatment group.

We assume that at period 1, individuals from the treatment group receive extra incentives to

get treated. We model this by introducing the binary instrument Z = T ×G. In Du�o (2001),

Z is an intensive school construction program which was implemented in treatment districts

in period 1 and not in control ones, giving greater incentives to go to school to children living

in those districts. The two corresponding potential treatments, D(1) and D(0), stand for

the treatment an individual would choose to receive with and without this supplementary

incentive. The observed treatment is D = ZD(1) + (1 − Z)D(0). Y (1) and Y (0) are the

potential outcomes of an individual with and without treatment. Implicit in this notation

is the exclusion restriction that the instrument does not a�ect the outcome directly. The

observed outcome is Y = DY (1) + (1 −D)Y (0). As in Athey & Imbens (2006), we consider

the following model for the potential outcomes:

Y (d) = hd(Ud, T ), d ∈ {0; 1} . (1)

We also make the following restrictions.
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Assumption 1 (Monotonicity)

hd(u, t) is strictly increasing in u for all (d, t) ∈ {0, 1}2.

Assumption 2 (Latent index model for potential treatments)

D(z) = 1{V ≥ vz(T )} with v0(t) > v1(t) for t ∈ {0; 1}.

Assumption 3 (Time invariance within groups)

For d ∈ {0, 1}, (Ud, V ) ⊥⊥ T |G.

Remarks on these assumptions are in order. Under Assumptions 1 and 2, V can be interpreted

as a propensity for treatment. Similarly, if potential outcomes were schooling performances

or wages, Ud could be interpreted as an ability index, and we stick to this interpretation

hereafter. Our latent index model is the same as in Vytlacil (2002), except that the threshold

can depend on time, to allow for the treatment rate to evolve over time. As shown by Vytlacil

(2002), such a latent index model is equivalent to the no de�ers condition in Imbens & Angrist

(1994). Note that our results would not change if Ud and V were indexed by time, except that

we would have to rewrite Assumption 3 as follows: for d ∈ {0, 1},
(
U0
d , V

0
)
|G ∼

(
U1
d , V

1
)
|G.

This means we could allow individual ability and taste for treatment to change over time,

provided their distribution remains the same in each group. Assumption 2 might seem to

imply that time can a�ect individual treatment choice in only one direction. The previous

discussion shows that this is actually not necessary for our results to hold. Time might induce

some observations to go from non-treatment to treatment, while having the opposite e�ect

on other observations. In what follows, we do not index Ud and V by time to alleviate the

notational burden, but it is worth bearing in mind that this is just an expositional choice, not

a substantive restriction.

Assumption 3 requires that the joint distribution of ability and propensity for treatment re-

mains stable in each group over time. It implies Ud ⊥⊥ T |G and V ⊥⊥ T |G, which correspond

to the time invariance assumption in Athey & Imbens (2006). As a result, Assumptions 1-3 im-

pose a standard CIC model both on Y and D. But Assumption 3 also implies Ud ⊥⊥ T |G,V ,
which means that in each group, the distribution of ability among people with a given taste

for treatment should not change over time. This is the key supplementary ingredient with

respect to the standard CIC model that we are going to use for identi�cation.

This joint independence assumption allows for endogenous selection into treatment, but it

restricts the way time can a�ect the selection mechanism. To understand this better, assume

potential treatments follow a pure Roy model: D(z) = 1{Y (1)− Y (0) ≥ c(z)}. Suppose also
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that Y (d) = Ud + ηdT + γUdT , and that the standard CIC assumption is veri�ed:

(U0, U1) ⊥⊥ T |G. (2)

This model allows for di�erent trends in potential outcomes across ability levels and therefore

across groups, because it does not impose that the distribution of U0 and U1 be the same

in the two groups. It also allows for di�erential trends for Y (0) and Y (1) through η0 and

η1. Combining this with the Roy model implies that selection into treatment can change over

time. Finally, it satis�es Assumption 1 provided γ > −1. One can then rewrite

D(z) = 1

{
U1 − U0 ≥

c(z)− (η1 − η0)T

1 + γT

}
.

Assumption 2 is satis�ed with V = U1 − U0 and vz(T ) = [c(z) − (η1 − η0)T ]/(1 + γT ).

Therefore, (U0, U1) ⊥⊥ T |G implies that Assumption 3 is satis�ed, because V is a deterministic

function of U0 and U1. On the contrary, with γd instead of γ in the potential outcomes

equation, Assumption 3 cannot hold, because V = U1 − U0 + T (γ1U1 − γ0U0). Assumption

3 is compatible with a Roy model in which time can have heterogeneous e�ects on outcomes

across ability levels, and an homogeneous e�ect on propensity for treatment. But it is not

compatible with a Roy model in which this second e�ect is heterogeneous across ability levels.

Finally, it is worth mentioning that the IV-DID model is incompatible with the Roy selection

model and outcome equations outlined above. As shown in de Chaisemartin (2013), in a

model allowing for heterogeneous treatment e�ects, the IV-DID method relies on common

trend assumptions both on potential outcomes and treatments. Common trend on potential

treatments is necessary to ensure that the denominator of the Wald-DID ratio captures the

size of the population induced to switch from non treatment to treatment between period 0

and 1 because of the instrument, not because of the e�ect of time alone. In the Roy model

above, the common trend on potential outcomes implies that γ = 0. But even in this case,

the common trend on potential treatments does not hold in general. To see this, note that

under (2), this condition is equivalent to

P (U1 − U0 ≥ c(z)− (η1 − η0)|G = 1)− P (U1 − U0 ≥ c(z)|G = 1)

= P (U1 − U0 ≥ c(z)− (η1 − η0)|G = 0)− P (U1 − U0 ≥ c(z)|G = 0).

This is unlikely to be true, unless we are ready to assume that U1 −U0 ⊥⊥ G. But this would
amount to assuming that groups are as good as randomly assigned, in which case we do not

need to resort to a longitudinal analysis to capture treatment e�ects. We could merely use a

standard cross-sectional IV using group as an instrument for treatment in period 1.

Hereafter, we refer to Assumptions 1-3 as to the IV-CIC model. This model extends the CIC

analysis to the fuzzy case. Actually, one can show that our IV-CIC assumptions reduce to
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those in Athey & Imbens (2006) when P (D11 = 1) = 1 and P (D10 = 1) = P (D01 = 1) =

P (D00 = 1) = 0, namely when their �sharp� setting holds.

Finally, we impose the two following restrictions, which are directly testable in the data.

Assumption 4 (Data restrictions)

1. S(Ygt|D = d) = S(Y ) = [y, y] with (y, y) ∈ R2
, for (g, t, d) ∈ {0; 1}3.

2. FYgt|D=d is strictly increasing and continuous on S(Y ), for (g, t, d) ∈ {0; 1}3.

Assumption 5 (Rank conditions)

1. P (D11 = 1)− P (D10 = 1) > 0.

2. If P (D00 = 0) > 0, FY10|D=0◦F−1
Y00|D=0(λ0) > µ0 and FY10|D=0◦F−1

Y00|D=0(1−λ0) < 1−µ0.

The �rst condition of Assumption 4 is a common support condition. Athey & Imbens (2006)

take a similar assumption and show how to derive partial identi�cation results when it is not

veri�ed. Point 2 is satis�ed if the distribution of Y is continuous with positive density in each

of the eight groups × period × treatment status cells.

Assumption 5 corresponds to a rank condition in a standard IV model. The IV-CIC identi�ca-

tion strategy requires that treatment rate changes in at least one group. If it diminishes in the

two groups over time we can just switch labels and consider 1−D as the treatment variable.

Therefore, the �rst condition is without loss of generality: it does not impose anything except

that treatment rate changes in at least one group.

To better understand the second condition of Assumption 5, let us draw a parallel with the

IV-DID model. The rank condition in an IV-DID regression is

P (D11 = 1)− P (D10 = 1)− (P (D01 = 1)− P (D00 = 1)) 6= 0,

meaning that the treatment rate does not follow parallel trends in the two groups. If it is

not satis�ed, one cannot run an IV-DID analysis because the instrument has no e�ect on

treatment. Point 2 in Assumption 5 is similar in spirit to this rank condition. Under Point 1,

µ0 < 1. Therefore, if λ0 > 1, Point 2 will automatically hold. µ0 < 1 and λ0 > 1 corresponds

to a situation where the share of untreated people decreases in the treatment group while it

increases in the control group. Giving the instrument to the treatment group in period 1 has

a strong e�ect on their propensity for treatment as it leads to opposite trends in treatment

rates across the two groups. If λ0 < 1, this condition will not automatically hold. The share of

untreated people decreases in both groups, meaning that the instrument might not have a very
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large e�ect on the share of people receiving treatment. If FY10|D=0 ◦ F−1
Y00|D=0 is the identity

function, this condition will be veri�ed if and only if λ0 > µ0. In practice, FY10|D=0 ◦F−1
Y00|D=0

might not be the identity function, but this still shows that the larger the di�erence between

λ0 and µ0, the more likely this condition holds.

Finally, it should be emphasized that as the �rst condition, the second condition of Assumption

5 is testable from the data, so it can be assessed beforehand by researchers willing to use our

IV-CIC model. When this test is rejected, our model cannot be used as it will only yield

trivial bounds for treatment e�ects, as we will explain below.

Before getting to the identi�cation results, it is useful to de�ne �ve subpopulations of interest.

Assumption 3 implies that P (D10 = 1) = P (V ≥ v0(0)|G = 1), and similarly P (D11 =

1) = P (V ≥ v1(1)|G = 1). Therefore, under Assumption 5, v0(0) > v1(1). Similarly, if

the treatment rate increases (resp. decreases) in the control group, v0(0) > v0(1) (resp.

v0(0) < v0(1)). Finally, assumption Assumption 2 implies v1(1) ≤ v0(1). Let always takers

be such that V ≥ v0(0), and let never takers be such that V < v1(1). Always takers are units

who get treated in period 0 even without receiving any incentive for treatment. Never takers

are units who do not get treated in period 1 even after receiving an incentive for treatment.

Let TC = V ∈ [min(v0(0), v0(1)),max(v0(0), v0(1))). TC stands for �time compliers,� and

represents observations whose treatment status switches between the two periods because of

the e�ect of time. Similarly, let IC = V ∈ [v1(1), v0(1)).2 IC stands for instrument compliers.

This population corresponds to compliers as per the de�nition of Imbens & Angrist (1994),

that is to say observations that become treated through the e�ect of Z only. However, in

our IV-CIC model, we cannot learn anything on this population. Instead, our identi�cation

results focus on observations that satisfy V ∈ [v1(1), v0(0)). This corresponds to untreated

observations at period 0 who become treated at period 1, through both the e�ect of Z and

time. We refer to those observations as compliers to simplify the exposition, and we let

hereafter C denote the event V ∈ [v1(1), v0(0)). If the treatment rate increases in the control

group (i.e. if v0(1) < v0(0)), we merely have C = IC ∪ TC, while if it decreases we have

C = IC \ TC.
Our parameters of interest are the cdf of Y (1) and Y (0) among compliers, as well as the

Local Average Treatment E�et (LATE) and Quantile Treatment E�ects (QTE) within this

population, which are respectively de�ned by

∆ = E (Y11(1)− Y11(0)|C) ,

τq = F−1
Y11(1)|C(q)− F−1

Y11(0)|C(q), q ∈ (0, 1).

2IC is de�ned to be empty when v0(1) = v1(1).
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3 Identi�cation

3.1 Point identi�cation results

We �rst show that when the treatment rate does not change between the two periods, the cdf

of Y (1) and Y (0) among compliers are identi�ed. Consequently, the LATE and QTE are also

point identi�ed. Let Qd(y) = F−1
Y01|D=d ◦ FY00|D=d(y) be the the quantile-quantile transform

of Y from period 0 to 1 in the control group conditional on D = d. This transform maps

y at rank q in period 0 into the corresponding y′ at rank q as well in period 1. Also, let

QD = DQ1 + (1−D)Q0. Finally, let Hd(q) = FY10|D=d ◦ F−1
Y00|D=d(q) be the inverse quantile-

quantile transform of Y from the control to the treatment group in period 0 conditional on

D = d. This transform maps rank q in the control group into the corresponding rank q′ in the

treatment group with the same value of y.

Theorem 3.1 If Assumptions 1-5 hold and for d ∈ {0, 1} P (D00 = d) = P (D01 = d) > 0,

FY11(d)|C(y) is identi�ed by

FY11(d)|C(y) =
P (D10 = d)FQd(Y10)|D=d(y)− P (D11 = d)FY11|D=d(y)

P (D10 = d)− P (D11 = d)

=
P (D10 = d)Hd ◦ FY01|D=d(y)− P (D11 = d)FY11|D=d(y)

P (D10 = d)− P (D11 = d)
.

This implies that ∆ and τq are also identi�ed. Moreover,

∆ =
E(Y11)− E(QD(Y10))

E(D11)− E(D10)
.

This theorem combines ideas from Imbens & Rubin (1997) and Athey & Imbens (2006). We

seek to recover the distribution of Y (1) and Y (0) among compliers in the treatment × period

1 cell. When the treatment rate does not change in the control group, v0(0) = v0(1). As

a result, there are no time compliers, and compliers are merely instrument compliers. To

recover the distribution of Y (1) among them, we start from the distribution of Y among all

treated observations of this cell. As shown in Table 1, those include both compliers and always

takers. Consequently, we must �withdraw� from this distribution the cdf of Y (1) among always

takers, exactly as in Imbens & Rubin (1997). But this last distribution is not observed. To

reconstruct it, we adapt the ideas in Athey & Imbens (2006). As is shown in Table 1, all

treated observations in the control group or in period 0 are always takers; the distribution of

Y (1) among always takers is identi�ed within those three cells. Since Assumption 3 implies

U1 ⊥⊥ T |G,V ≥ v0(0),

the distribution of U1 is the same in periods 0 and 1 among always takers in the control

group. Similarly, this equation implies that U1 also has the same distribution in period 0
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and 1 among always takers of the treatment group. This implies that the quantile-quantile

transform among always takers is the same in the treatment and control groups. As a result,

we can identify the distribution of Y (1) among treatment × period 1 always takers, applying

the quantile-quantile transform from period 0 to 1 among treated observations in the control

group to the distribution of Y (1) among always takers in the treatment group in period 0.

Identi�cation of the distribution of Y (0) among compliers in the treatment × period 1 cell is

obtained through similar steps.

Treatment Group

20% treated: Always Takers                  
65% treated: Always Takers and 

Compliers                                        

80% untreated: Never Takers and 
Compliers                   

35% Untreated: Never Takers              

Period 0 Period 1

Control Group

30% treated: Always Takers                   30% treated: Always Takers                  

70% untreated: Never Takers and 
Compliers               

70% untreated: Never Takers and 
Compliers               

Table 1: Populations of interest when P (D00 = 0) = P (D01 = 0).

Another way to understand the transform we use to reconstruct the cdf of Y (1) among always

takers is to regard it as a double matching. Consider an always taker in the treatment ×
period 0 cell. She is �rst matched to an always taker in the control × period 0 cell with

same y. Those two always takers are observed at the same period of time and have the same

treatment status. Therefore, under assumption Assumption 1 they must have the same u1.

Second, the control × period 0 always taker is matched to its rank counterpart among always

takers of the control × period 1 cell (this is merely the quantile-quantile transform). We

denote y∗ the outcome of this last observation. Because U1 ⊥⊥ T |G,V ≥ v0(0), those two

observations must also have the same u1. Consequently, y
∗ = h1(u1, 1), which means that y∗

is the outcome that the treatment × period 0 cell always taker would have obtained in period

1. Therefore, to recover the whole distribution of Y (1) in period 1 among test group always

takers, we translate the whole distribution of always takers in the period 0 × test group cell

from y to the corresponding y∗ for each value of y.

13



Note that our LATE estimand is similar to the LATE estimand in Imbens & Angrist (1994),

the standard Wald ratio. Once noted that conditional on G = 1, Z = T , we have

∆ =
E(Y |G = 1, Z = 1)− E(QD(Y )|G = 1, Z = 0)

E(D|G = 1, Z = 1)− E(D|G = 1, Z = 0)
.

The Wald ratio has the same expression, except that here Y is replaced by QD(Y ) in the

second term of the numerator. The standard Wald parameter does not identify a causal e�ect

here because conditional on G = 1, Z (i.e. T ) is not independent of Y (d): the distributions

of potential outcomes might evolve with time. To take into account the e�ect of time on the

distribution of potential outcomes, we apply the quantile-quantile transform observed between

period 0 and 1 in the control group to the distribution of Y in period 0 in the treatment group.

Assumptions 1 and 3 ensure that quantile-quantile transforms are the same in the two groups.

Likewise, the formulae of the cdf of Y (1) and Y (0) among compliers are very similar to those

obtained in Imbens & Rubin (1997). For instance, the cdf of Y (1) rewrites as

P (D = 1|G = 1, Z = 1)FY |D=1,G=1,Z=1(y)− P (D = 1|G = 1, Z = 0)FQ1(Y )|D=1,G=1,Z=0(y)

P (D = 1|G = 1, Z = 1)− P (D = 1|G = 1, Z = 0)
.

The cdf of Y (1) in the Imbens and Angrist IV model has the same expression except that

Q1(Y ) is replaced by Y in the second term of the numerator. Here again, this is to account for

the fact that conditional on G = 1, the instrument T is not independent of potential outcomes.

Under Assumptions 1-5, the LATE and QTE for compliers are point identi�ed when 0 <

P (D00 = 0) = P (D01 = 0) < 1, but not in the extreme cases where P (D00 = 0) = P (D01 =

0) ∈ {0, 1}. For instance, when P (D00 = 1) = P (D01 = 1) = 1, FY11(1)|C is identi�ed by

Theorem 3.1, but FY11(0)|C is not. Such situations are likely to arise in practice, for instance

when a policy is extended to a previously ineligible group, or when a program or a technology

previously available in some geographic areas is extended to others (see Subsection 6.1 below).

We therefore consider a mild strengthening of our assumptions under which both FY11(0)|C and

FY11(1)|C are point identi�ed in those instances.

Assumption 6 (Common e�ect of time on both potential outcomes) h0(u, t) = h1(u, t) =

h(u, t) for every (u, t) ∈ S(U)× {0, 1}.

Assumption 6 requires that the e�ect of time be the same on both potential outcomes. It

implies that two observations with the same outcome in period 0 will also have the same

outcome in period 1 if they do not switch treatment between the two periods, even if they do

not share the same treatment at period 0. Under this assumption, if P (D00 = 1) = P (D01 =

1) = 1, changes in the distribution of Y in the control group over time allow us to identify

the e�ect of time both on Y (0) and Y (1), hence allowing us to recover both FY11(0)|C and

FY11(1)|C .
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Theorem 3.2 If Assumptions 1-6 hold and P (D00 = d) = P (D01 = d) = 0 for some d ∈
{0, 1}, FY11(d)|C(y) and FY11(1−d)|C(y) are identi�ed by

FY11(d)|C(y) =
P (D10 = d)FQ1−d(Y )10|D=d(y)− P (D11 = d)FY11|D=d(y)

P (D10 = d)− P (D11 = d)

FY11(1−d)|C(y) =
P (D10 = 1− d)FQ1−d(Y )10|D=1−d(y)− P (D11 = 1− d)FY11|D=1−d(y)

P (D10 = 1− d)− P (D11 = 1− d)
.

This implies that ∆ and τq are also identi�ed. Moreover,

∆ =
E(Y11)− E(Q1−d(Y10))

E(D11)− E(D10)
.

A last situation worth noting is when the treatment rate is equal to 0 at both dates in the

control group, and is also equal to 0 in the �rst period in the treatment group. This is a

special case of Theorem 3.2, but in such instances we can actually identify the model under

fewer assumptions. To see this, note that in such situations,

FY11(1)|C = FY11|D=1 (3)

because there are no always takers in the treatment group. Therefore, we only need to recover

FY11(0)|C . But since the distribution of Y11(0) among never takers is identi�ed by FY11|D=0,

under Assumption 2 we only need to recover FY11(0). This can be achieved under the standard

changes-in-changes assumptions, as the control group remains fully untreated at both dates.

3.2 Partial identi�cation

When P (D00 = d) = P (D01 = d), FY11(d)|C is identi�ed under Assumptions 1-5 or Assump-

tions 1-6. We shall show below that if this condition is not veri�ed, the functions FY11(d)|C are

partially identi�ed. For that purpose, we must distinguish between two cases.

The �rst one is when P (D00 = d) > 0. In such instances, the �rst of the two matchings

described in the previous section works as before. But the second one collapses, since we

no longer have v0(1) = v0(0). Among treated observations in the control × period 0 cell,

U1 is distributed conditional on G = 0, V ≥ v0(0), while it is distributed conditional on

G = 0, V ≥ v0(1) in period 1. This implies that we cannot match period 0 and period

1 observations on their rank. For instance, when the treatment rate increases in the control

group, treated observations in the control group include only always takers in period 0, while in

period 1 they also include time compliers, as is shown in Table 2. However, under Assumption

3 the share of time compliers among treated observations in the control group in period 1

is known. Therefore, under Assumptions 1-5, the distributions of potential outcomes among
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compliers can be written as functions of observed distributions and of FY01(d)|TC , in a formula

where FY01(d)|TC enters with a weight identi�ed from the data.

35% treated: Always Takers and Time 
Compliers

65% untreated: Never Takers and 
Instrument Compliers

70% untreated: Never Takers, 
Instrument Compliers and Time 

Compliers

25% treated: Always Takers and Time 
Compliers 60% treated: Always Takers and 

Instrument Compliers

75% untreated: Never Takers and 
Instrument Compliers. 40% Untreated: Never Takers and 

Time Compliers

30% treated: Always Takers

P(D01 = 1) < P(D00 = 1)

Period 1

Control Group

Treatment Group

Period 0

P(D01 = 1) ≥ P(D00 = 1)

Treatment Group

Control Group

35% treated: Always Takers and Time 
Compliers

Period 0 Period 1

30% treated: Always Takers

70% untreated: Never Takers, 
Instrument Compliers and Time 

Compliers      

65% untreated: Never Takers and 
Instrument Compliers     

25% treated: Always Takers 

75% untreated: Never Takers, 
Instrument Compliers and Time 

Compliers                     

60% treated: Always Takers, 
Instrument Compliers and Time 

Compliers

40% Untreated: Never Takers                    

Table 2: Populations of interest.

The second case we have to consider is when P (D00 = d) = 0. In this case, the �rst step of

the aforementioned double matching collapses for the distribution of Y (d). For instance, if

P (D00 = 1) = 0, there are no treated observations in the control group in period 0 to which

treated observations in the treatment group in period 0 can be matched. Still, the cdf of Y

among treated observations in the treatment × period 1 cell writes as a weighted average of

the cdf of Y (d) among compliers and always or never takers. We can use this fact to bound

FY11(d)|C .
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The following lemma summarizes these results. To derive bounds on FY11(d)|C and then on the

LATE and QTE, we �rst relate these cdf to observed distributions and one unidenti�ed cdf.

Lemma 3.1 If Assumptions 1-5 hold, then:

- If P (D00 = d) > 0,

FY11(d)|C(y) =
P (D10 = d)Hd ◦ (λdFY01|D=d(y) + (1− λd)FY01(d)|TC(y))− P (D11 = d)FY11|D=d(y)

P (D10 = d)− P (D11 = d)
.

- If P (D00 = d) = 0,

FY11(d)|C =
P (D10 = d)FY11(d)|(2d−1)V >(2d−1)v0(0) − P (D11 = d)FY11|D=d

P (D10 = d)− P (D11 = d)
.

From this lemma, it appears that when P (D00 = d) > 0, we merely need to bound FY01(d)|TC to

derive bounds on FY11(d)|C . In order to do so, we must take into account the fact that FY01(d)|TC

is related to two other cdf. To alleviate the notational burden, let Td = FY01(d)|TC , Cd(Td) =

FY11(d)|C , G0(T0) = FY01(0)|V <v0(0) and G1(T1) = FY01(1)|V≥v0(0). With those notations, we

have

Gd(Td) = λdFY01|D=d + (1− λd)Td

Cd(Td) =
P (D10 = d)Hd ◦Gd(Td)− P (D11 = d)FY11|D=d

P (D10 = d)− P (D11 = d)
.

The fact that Td, Gd(Td) and Cd(Td) should all be included between 0 and 1 imposes several

restrictions on Td, from which we derive our bounds. Let M0(x) = max(0, x), m1(x) =

min(1, x) and de�ne

T d = M0

(
m1

(
λdFY01|D=d −H−1

d (µdFY11|D=d)

λd − 1

))
,

T d = M0

(
m1

(
λdFY01|D=d −H−1

d (µdFY11|D=d + (1− µd))
λd − 1

))
.

When P (D00 = d) > 0, we can bound FY11(d)|C by Cd(T d) and Cd(T d). These bounds can

however be improved by remarking that FY11(d)|C is increasing. Therefore, we de�ne our

bounds as:
Bd(y) = supy′≤y Cd (T d) (y′),

Bd(y) = infy′≥y Cd
(
T d
)

(y′).
(4)

When P (D00 = d) = 0, the bounds on FY11(d)|C are much simpler. We simply bound

FY11(1)|(2d−1)V≥(2d−1)v0(0) by 0 and 1, which yields

Bd(y) = M0

(
P (D10 = d)− P (D11 = d)FY11|D=d

P (D10 = d)− P (D11 = d)

)
, Bd(y) = m1

( −P (D11 = d)FY11|D=d

P (D10 = d)− P (D11 = d)

)
.
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For d = 0, the bounds are actually trivial since B0(y) = 0 and B1(y) = 1.

Another important case where the bounds take a simple form is when P (D10 = 1) = 0. In

this case, one can check that

B1 = B1 = FY11|D=1.

This is because in such situations, FY11(1)|C = FY11|D=1 as shown in Equation (3).

Theorem 3.3 proves that Bd and Bd are indeed bounds for FY11(d)|C . We also consider the

issue of whether these bounds are sharp or not. Hereafter, we say that Bd is sharp (and

similarly for Bd) if there exists a sequence of cdf (Gk)k∈N such that supposing FY11(d)|C = Gk

is compatible with both the data and the model, and for all y, limk→∞Gk(y) = Bd(y). We

establish that Bd and Bd are sharp under Assumption 7 below. Note that this assumption is

testable from the data.

Assumption 7 (Increasing bounds)

For (d, g, t) ∈ {0, 1}3, FYgt|D=d is continuously di�erentiable, with positive derivative on
◦
S(Y ).

Moreover, either (i) P (D00 = d) = 0 or (ii) T d, Gd(T d) and Cd(T d) (resp. T d, Gd(T d) and

Cd(T d)) are increasing.

Theorem 3.3 If Assumptions 1-5 hold, we have

Bd(y) ≤ FY11(d)|C(y) ≤ Bd(y).

Moreover, if Assumption 7 holds, Bd(y) and Bd(y) are sharp.

The intuition underlying the sharpness result goes as follows. Let Td be the set of all functions
Td increasing and included between 0 and 1 such that Gd(Td) and Cd(Td) are also increasing

and included between 0 and 1. T0 is the set of all cdf FY01(0)|TC such that FY01(0)|V <v0(0) and

FY11(0)|C are cdf. This suggests that Td is the set of all candidates for FY01(d)|TC that can be

rationalized by the data and the model. Now, assume that there exists T−0 and T+
0 in T0 such

that T−0 ≤ T0 ≤ T+
0 for every T0 ∈ T0. When λ0 > 1, G0(.) is decreasing in T0, which implies

that C0(.) is also decreasing in T0. Therefore, in such instances the sharp lower bound of C0(.)

is equal to C0(T+
0 ), while the sharp upper bound is equal to C0(T−0 ). Moreover, when λ0 > 1,

it appears after some algebra that T0, G0(T0) and C0(T0) are all included between 0 and 1 if

and only if T 0 ≤ T0 ≤ T 0. Therefore, if T 0, G0(T 0) and C0(T 0) are increasing, T 0 is in T0

and T+
0 = T 0. This implies that B0 = C0(T 0) is sharp under Assumption 7. When λ0 < 1, a

similar reasoning also shows that B0 = C0(T 0) is sharp under Assumption 7.

Interestingly, when [y, y] = (−∞,+∞) B0 and B0 are proper cdf when λ0 > 1, but are

defective when λ0 < 1. More precisely, limy→+∞B0(y) < 1 and limy→−∞B0(y) > 0. The
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reason for this asymmetry is that when λ0 < 1, time compliers belong to the group of treated

observations in the control × period 1 cell (cf. Table 2). Therefore, their Y (0) is not observed

in period 1, and the data does not impose any restriction on FY01(0)|TC : it could be equal

to 0 or to 1, hence the defective bounds. On the contrary, when λ0 > 1, time compliers

belong to the group of untreated observations in the control × period 1 cell. Moreover, under

Assumption 3, we know that they account for 100(1 − 1/λ0)% of this group. Consequently,

the data imposes some restrictions on FY01(0)|TC . For instance, we must have

FY01|D=0,Y≥α ≤ FY01(0)|TC ≤ FY01|D=0,Y≤β,

where α = F−1
Y01|D=0 (1/λ0) and β = F−1

Y01|D=0 (1− 1/λ0). The cdf of time compliers cannot

be below the one of the 100(1 − 1/λ0)% of observations with highest Y of this group, and

cannot be above the one of the 100(1 − 1/λ0)% of observations with lowest Y of this group.

B0 and B0 are trimming bounds in the spirit of Horowitz & Manski (1995) when λ0 > 1, but

not when λ0 < 1, which is the reason why they are defective then.

Another interesting asymmetry is that B1 and B1 are always proper cdf, while we could have

expected them to be defective when λ0 > 1, because then time compliers are untreated in

period 1, so their Y (1) is unobserved. This second asymmetry stems from the fact that when

λ0 > 1, time compliers do not belong to our population of compliers (C = IC \ TC), while
when λ0 < 1, time compliers are included within our population of interest (C = IC ∪ TC).
Setting FY01(1)|TC(y) = 0 does not imply that limy→+∞ FY11(1)|C(y) < 1 when TC ∩ C is

empty, while setting FY01(0)|TC(y) = 0 yields limy→+∞ FY11(0)|C(y) < 1 when TC ⊂ C.

Finally, one can check that limy→y B0(y) = M0

(
P (D10=0)H0(λ0)−P (D11=0)

P (D10=0)−P (D11=0)

)
, while limy→y B0(y) =

m1

(
P (D10=0)H0(1−λ0)
P (D10=0)−P (D11=0)

)
. Under Assumption 5, the �rst limit is strictly greater than 0 and

the second one is strictly lower than 1, which implies that our two bounds are non trivial.

If Assumption 5 is violated, at least one of our two bounds is trivial, which implies that for

every quantile treatment e�ect one of our two bounds will either be +∞ or −∞.

A consequence of Theorem 3.3 is that QTE and LATE are partially identi�ed when P (D00 =

0) 6= P (D01 = 0) or P (D00 = 0) ∈ {0, 1}. The bounds are given in the following corollary.

To ensure that the bounds on the LATE are well de�ned, we impose the following technical

condition.

Assumption 8 (Existence of moments)∫
|y|dB1(y) < +∞ and

∫
|y|dB1(y) < +∞.3

3
∫
|y|dB1(y) is the integral of the absolute value function with respect to the probability measure ν de�ned

on [y, y] and generated by B1. The same holds for
∫
|y|dB1(y),

∫
|y|dB0(y) and

∫
|y|dB0(y). Because we may

have limy→y B0(y) > 0 or limy→y B0(y) < 1, ν may admit a mass at y or y.
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Corollary 3.4 If Assumptions 1-5 and 8 hold and P (D00 = 0) 6= P (D01 = 0) , ∆ and τq are

partially identi�ed, with∫
ydB1(y)−

∫
ydB0(y) ≤ ∆ ≤

∫
ydB1(y)−

∫
ydB0(y),

max(B
−1
1 (q), y)−min(B−1

0 (q), y) ≤ τq ≤ min(B−1
1 (q), y)−max(B

−1
0 (q), y).

Moreover, suppose that Assumption 7 holds. Then

- If λ0 > 1 or E(|Y11(0)| |C) < +∞, the bounds on ∆ are sharp.

- If λ0 > 1 or for d ∈ {0, 1}, Bd(y) = q and Bd(y) = q admit a unique solution, the

bounds on τq are sharp.

When λ0 < 1 and S(Y ) is unbounded, the bounds on ∆ are in�nite, and some bounds on τq

are also in�nite. On the contrary, when λ0 > 1 the bounds on τq are always �nite, for every

q ∈ (0, 1). The bounds on the LATE will also be �nite in this case, as soon as B0 and B0

admit an expectation. Table 3 summarizes the situation.

Table 3: Finiteness of the bounds when y = −∞, y = +∞.

λ0 < 1 λ0 > 1

τ q, q small �nite �nite

τ q, q small +∞ �nite

τ q, q large −∞ �nite

τ q, q large �nite �nite

∆ −∞ �nite in general

∆ +∞ �nite in general

q small means 0 < q < q for a well chosen q. Similarly,

q large means q < q < 1 for a well chosen q.

4 Extensions

4.1 Identi�cation of a conditional IV-CIC model

We shall now consider a version of our IV-CIC model incorporating covariates, which we

refer to as the conditional IV-CIC model. This will allow us to weaken our main identifying
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assumption and to outline two more strategies to recover point identi�cation when P (D00 =

d) 6= P (D01 = d).

Let λd,x = P (D01 = d|X = x)/P (D00 = d|X = x) and µd,x = P (D11 = d|X = x)/P (D10 =

d|X = x). Assume that

Y (d) = hd(Ud, T,X), d ∈ {0; 1} ,

and substitute the following assumptions to Assumptions 1-5:

Assumption 9 (Monotonicity 2)

hd(u, t, x) is strictly increasing in u for all (d, t, x) ∈ {0, 1}2 × S(X).

Assumption 10 (Latent index model for potential treatments 2)

D(z) = 1{V ≥ vz(T,X)} with v0(t, x) > v1(t, x) for (t, x) ∈ {0; 1} × S(X).

Assumption 11 (Conditional time invariance)

For d ∈ {0, 1}, (Ud, V ) ⊥⊥ T |G,X.

Assumption 12 (Data restrictions 2)

1. S(Xgt|D = d) = S(X) = [x, x] with (x, x) ∈ R2
.

2. S(Ygt|D = d,X = x) = S(Y ) = [y, y] with (y, y) ∈ R2
, for (g, t, d, x) ∈ {0; 1}3 × S(X).

3. FYgt|D=d,X=x is strictly increasing and continuous on S(Y ), for (g, t, d, x) ∈ {0; 1}3 ×
S(X).

Assumption 13 (Changes in the treatment rates 2)

For every x ∈ S(X),

1. P (D11 = 1|X = x)− P (D10 = 1|X = x) > 0.

2. If P (D00 = 0|X = x) > 0, FY10|D=0,X=x ◦F−1
Y00|D=0,X=x(λ0,x) > µ0,x and FY10|D=0,X=x ◦

F−1
Y00|D=0,X=x(1− λ0,x) < 1− µ0,x.

Incorporating covariates allows us to weaken the main identifying assumption of our model.

When the distribution of some X evolves over time in the control or in the treatment group,

Assumption 11 might be more credible than Assumption 3: if the distribution of X is not

stable over time and X is correlated to (Ud, V ), then the distribution of (Ud, V ) might not be

stable either.

The main results of the previous section extend to this conditional IV-CIC model. Firstly,

notice that the distribution of X11 among compliers is identi�ed under Assumptions 9-13, as

shown in the next lemma.
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Lemma 4.1 Suppose that Assumptions 9-13 hold. Then,

fX11|C(x) =
[P (D11 = 1|X = x)− P (D10 = 1|X = x)] fX11(x)

E [P (D11 = 1|X)− P (D10 = 1|X)|G = 1, T = 1]

Then, the conditional IV-CIC assumptions imply that the IV-CIC assumptions are satis�ed

conditional on X, so one can prove conditional versions of Theorems 3.1 and 3.3. This im-

plies that for every d ∈ {0, 1}, FY11(d)|C,X=x(y) is point identi�ed whenever 0 < P (D00 =

d|X = x) = P (D01 = d|X = x), while it is partially identi�ed otherwise. One can then

integrate FY11(d)|C,X=x(y) or its bounds over the distribution of X11 among compliers to point

or partially identify FY11(d)|C(y). This idea is formalized in the following theorem, in the point

identi�ed case. Hereafter, we let Qd,x(y) = F−1
Y01|D=d,X=x ◦ FY00|D=d,X=x(y).

Theorem 4.1 Suppose Assumptions 9-13 hold. If 0 < P (D00 = d|X) = P (D01 = d|X)

almost surely, the conditional distribution of potential outcomes on compliers is identi�ed by

FY11(d)|X=x,C(y) =
P (D10 = d|X = x)FQd,x(Y10)|D=d,X=x(y)− P (D11 = d|X = x)FY11|D=d,X=x(y)

P (D10 = d|X = x)− P (D11 = d|X = x)
.

The overall distribution of potential outcomes among compliers is also identi�ed.

This theorem is useful when P (D00 = d) 6= P (D01 = d) but P (D00 = d|X) = P (D01 =

d|X) > 0 almost surely, meaning that in the control group, the evolution of the treatment

rate is entirely driven by a change in the distribution of X over time. Otherwise, we can of

course obtain bounds, using a similar argument as in Theorem 3.3. The bounds are likely to

be tighter than the unconditional ones if X drives most of the evolution of the treatment rate

in the control group.

We also consider another assumption under which treatment e�ects are still point identi�ed,

even if the treatment rate evolves in some X cells of the control group.

Assumption 14 (Strong conditional time invariance)

Ud ⊥⊥ T |G = 0, D(0) = d,X

When P (D00 = 0|X = x) = P (D01 = 0|X = x), Assumption 11 implies that Assumption

14 holds in the X = x cell. But this is no longer true when P (D00 = 0|X = x) 6= P (D01 =

0|X = x). Then, Assumption 14 requires that even though selection into treatment might

evolve over time, treated (resp. untreated) observations in the control group have the same

distribution of U1 (resp. U0) in period 0 and 1. This might be credible when the change in

the treatment rate between the two periods is small, and X captures most of selection into
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treatment. If P (D00 = 0|X = x) < P (D01 = 0|X = x), a su�cient condition for that to hold

in the X = x cell is

Ud ⊥⊥ V |G = 0, T = d,D(0) = d,X = x, d ∈ {0, 1}.

This is reminiscent of the ignorability condition in Rosenbaum & Rubin (1983), even though

we believe it is weaker. Ignorability states that selection is exogenous after controlling for X.

Here we posit that the propensity for the treatment is exogenous after controlling for both X

and D(0).

Theorem 4.2 Suppose Assumptions 9-13 and 14 hold. The conditional distributions of po-

tential outcomes on compliers are identi�ed by

FY11(d)|X=x,C(y) =
P (D10 = d|X = x)FQd,x(Y )10|D=d,X=x(y)− P (D11 = d|X = x)FY11|D=d,X=x(y)

P (D10 = d|X = x)− P (D11 = d|X = x)

for d ∈ {0, 1}. The overall distribution of potential outcomes among compliers is also identi�ed.

4.2 Several periods and groups

Results of Section 3 can also be extended to settings with many groups. This will increase

the chances that we can recover point identi�cation, provide us with a test of our model, and

at the very least tighten our bounds relative to the two groups case. If the treatment rate is

stable in at least one group, which is likely to be the case with many groups, one can use it

as a control group and point identify treatment e�ects in period 1 among compliers in every

group in which the treatment rate changes between the two periods.4 If there are several

groups in which the treatment rate remains stable between the two periods, one can use either

of those groups as a control for other groups. This provides us with a test of our IV-CIC

model, as the quantile-quantile transforms of the outcome should be the same in all these

control groups. Formally, F−1
Yg0|D=d ◦ FYg1|D=d should not depend on g, for any g such that

P (Dg1 = 0) = P (Dg0 = 0). If the treatment rate changes in every group, then for each group

we can derive bounds for the cdf of Y (0) and Y (1) among compliers using any other group

satisfying Assumption 5 as a control group, and we can tighten the various bounds obtained

by using intersection bounds (see Chernozhukov et al., 2013).

The previous results can also be extended to settings with many time periods, which will

increase even more more the chances of recovering point identi�cation. With more than two

4For groups in which the treatment rate diminishes over the two periods, one can just switch labels and

consider 1 − D as the treatment variable. As explained before, the �rst condition in Assumption 5 is just

a normalization. Doing this, we recover the opposite of the LATE and QTE, for a population of compliers

de�ned di�erently (the individuals who switch from D = 1 to D = 0 either because of time or because of the

instrument).
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periods, if the treatment rate is stable in at least one group between period t−k and t for some

k, one can use it as a control group and point identify treatment e�ects in period t among

compliers in every group in which the treatment rate changes between t− k and t. However,

our time invariance assumption might be less credible when the number of time periods grows,

since groups are more likely to evolve over a long time period.

4.3 Testability

We show now that our IV-CIC model is testable. We focus here on the unconditional model

described in Section 2, but similar implications could be obtained for the conditional models

considered above. For every y ≤ y′ in S(Y )2, let

Id(y, y
′) = [min(T d(y), T d(y)),max(T d(y

′), T d(y
′))],

with the convention that Id(y, y
′) = ∅ if

min(T d(y), T d(y)) > max(T d(y
′), T d(y

′)).

Theorem 4.3 If Assumption 4 holds, we reject Assumptions 1-3 together if for some d ∈
{0; 1}, one of the two following statements holds:

1. For some y0 ≤ y1 in S(Y )2, Id(y0, y1) = ∅.

2. For some y0 < y1 in S(Y )2, Id(y0, y1) 6= ∅ but for every t0 ≤ t1 in Id(y0, y1)2,

P (D10 = d)Hd ◦ (λdFY01|D=d(y1) + (1− λd)t1)− P (D11 = d)FY11|D=d(y1)

P (D10 = d)− P (D11 = d)

<
P (D10 = d)Hd ◦ (λdFY01|D=d(y0) + (1− λd)t0)− P (D11 = d)FY11|D=d(y0)

P (D10 = d)− P (D11 = d)
. (5)

Theorem 4.3 provides a theoretical test of the model. When the treatment rate does not

change in the control group, i.e. when λd = 1, the two testable implications of the IV-CIC

model reduce to having that

P (D10 = d)Hd ◦ FY01|D=d(y)− P (D11 = d)FY11|D=d(y)

P (D10 = d)− P (D11 = d)

is increasing. Therefore, in such instances, our test is similar to the one developed by Kitagawa

(2013) for the instrumental variable model in Angrist et al. (1996) with binary treatment and

instrument. In their model, the cdf of compliers can also be written as the di�erence between

two increasing functions, and thus may not be increasing (see Imbens & Rubin, 1997).

On the contrary, when the treatment rate changes in the control group, our test of the IV-CIC

model is slightly di�erent. In such instances, we can reject the model when Td is empty for
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some d ∈ {0, 1}, i.e. when there is no function Td such that Gd(Td) and Cd(Td) are also cdf,

while such a function should exist under Assumptions 1-3 as shown in Lemma 3.1. We give

two su�cient conditions under which Td is empty. To understand them, remark that Id(y, y
′)2

includes the set of all possible values for Td(y) and Td(y
′) such that Td(y), Td(y

′), Gd(Td)(y),

Cd(Td)(y), Gd(Td)(y
′), and Cd(Td)(y

′) are included between 0 and 1. If Id(y0, y1) is empty for

some y0 ≤ y1, Td must be empty. If point 2 holds, Td is also empty because it is not possible

to de�ne Td(y0) and Td(y1) such that 0 ≤ Td(y0) ≤ Td(y1) ≤ 1, Gd(Td)(y0), Gd(Td)(y1),

Cd(Td)(y0) and Cd(Td)(y1) are included between 0 and 1 and Cd(Td)(y0) ≤ Cd(Td)(y1).

The test presented in point 2 is much simpler to implement when λ0 < 1 than when λ0 > 1.

When λ0 < 1,

P (D10 = d)Hd ◦ (λdFY01|D=d(y) + (1− λd)t)− P (D11 = d)FY11|D=d(y)

P (D10 = d)− P (D11 = d)

is increasing in t. Therefore, one necessary and su�cient condition for inequality (5) to hold

in this case is that there exists y0 ≤ y1 in S(Y )2 such that for some d ∈ {0, 1},

P (D10 = d)Hd ◦ (λdFY01|D=d(y1) + (1− λd) max(T d(y1), T d(y1)))− P (D11 = d)FY11|D=d(y1)

P (D10 = d)− P (D11 = d)

<
P (D10 = d)Hd ◦ (λdFY01|D=d(y0) + (1− λd) min(T d(y0), T d(y0)))− P (D11 = d)FY11|D=d(y0)

P (D10 = d)− P (D11 = d)
.

In contrast, when λ0 > 1,

P (D10 = d)Hd ◦ (λdFY01|D=d(y) + (1− λd)t)− P (D11 = d)FY11|D=d(y)

P (D10 = d)− P (D11 = d)

is decreasing in t. Then, one necessary and su�cient condition for inequality (5) to hold in

this case is that there exists y0 < y1 in S(Y )2 such that for some d ∈ {0, 1} and for every t in

I(y0, y1),

P (D10 = d)Hd ◦ (λdFY01|D=d(y1) + (1− λd)t)− P (D11 = d)FY11|D=d(y1)

P (D10 = d)− P (D11 = d)

<
P (D10 = d)Hd ◦ (λdFY01|D=d(y0) + (1− λd)t)− P (D11 = d)FY11|D=d(y0)

P (D10 = d)− P (D11 = d)
.

When λ0 < 1, for every y0 < y1 the test will amount to assessing inequality (5) for only one

value of (t0, t1). When λ0 > 1, for every y0 < y1 the test will amount to assessing Inequality

(5) for an in�nity of (t0, t1), unless I(y0, y1) reduces to a point.

5 Inference

In this section, we develop inference on LATE and QTE in the point and partially identi�ed

cases. In both cases, we impose the following conditions.
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Assumption 15 (Independent and identically distributed observations)

(Yi, Di, Gi, Ti)i=1,...,n are i.i.d.

Assumption 16 (Technical conditions for inference 1)

S(Y ) is a bounded interval [y, y]. Moreover, for all (d, g, t) ∈ {0, 1}3, Fdgt = FYgt|D=d and

FY11(d)|C are continuously di�erentiable with strictly positive derivatives on [y, y].

Athey & Imbens (2006) impose a condition similar to Assumption 16 when studying the

asymptotic properties of their estimator.

We �rst consider the point identi�ed case, which corresponds either to 0 < P (D00 = 0) =

P (D01 = 0) < 1 under Assumptions 1-5, or to P (D00 = 0) = P (D01 = 0) ∈ {0, 1} under
Assumptions 1-6. For simplicity, we focus hereafter on the �rst case but the estimator and its

asymptotic properties are completely similar in the second case. Let F̂dgt (resp. F̂
−1
dgt) denote

the empirical cdf (resp. quantile function) of Y on the subsample {i : Di = d,Gi = g, Ti = t}
and Q̂d = F̂−1

d01 ◦ F̂d00. We also let Igt = {i : Gi = g, Ti = t} and ngt denote the size of Igt for
all (d, g) ∈ {0, 1}2. Our estimator of the LATE is

∆̂ =
1
n11

∑
i∈I11 Yi −

1
n10

∑
i∈I10 Q̂Di(Yi)

1
n11

∑
i∈I11 Di − 1

n10

∑
i∈I10 Di

Let P̂ (Dgt = d) be the proportion of subjects with D = d in the sample Igt, let Ĥd =

F̂d10 ◦ F̂−1
d00, and let

F̂Y11(d)|C =
P̂ (D01 = d)Ĥd ◦ F̂d01 − P̂ (D11 = d)F̂d11

P̂ (D10 = d)− P̂ (D11 = d)
.

Our estimator of the QTE of order q for compliers is

τ̂q = F̂−1
Y11(1)|C(q)− F̂−1

Y11(0)|C(q).

We say hereafter that an estimator θ̂ of a parameter θ is root-n consistent and asymptotically

normal if there exists Σ such that
√
n(θ̂−θ) L−→ N (0,Σ). Theorem 5.1 below shows that both

∆̂ and τ̂q are root-n consistent and asymptotically normal. Because the asymptotic variances

take complicated expressions, we consider the bootstrap for inference. For any statistic T ,

we let T ∗ denote its bootstrap counterpart. For any root-n consistent statistic θ̂ estimating

consistently the parameter θ, we say that the bootstrap is consistent if with probability one

and conditional on the sample,
√
n(θ̂∗ − θ̂) converges to the same distribution as the limit

distribution of
√
n(θ̂ − θ).5 Theorem 5.1 also shows that bootstrap con�dence intervals are

asymptotically valid.

5See, e.g., van der Vaart (2000), Section 23.2.1, for a formal de�nition of conditional convergence.
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Theorem 5.1 Suppose that Assumptions 1-5, 15-16 hold and 0 < P (D00 = 0) = P (D01 =

1) < 1. Then ∆̂ and τ̂q are root-n consistent and asymptotically normal. Moreover, the

bootstrap is consistent for both ∆̂ and τ̂q.

We now turn to the partially identi�ed case. First, suppose that 0 < P̂ (D00 = 0) < 1 and

0 < P̂ (D10 = 0) < 1. Let λ̂d = P̂ (D01=d)

P̂ (D00=d)
, µ̂d = P̂ (D11=d)

P̂ (D10=d)
and de�ne

T̂ d = M0

(
m1

(
λ̂dF̂Y01|D=d − Ĥ−1

d (µ̂dF̂Y11|D=d)

λ̂d − 1

))
,

T̂ d = M0

(
m1

(
λ̂dF̂Y01|D=d − Ĥ−1

d (µ̂dF̂Y11|D=d + (1− µ̂d))
λ̂d − 1

))
,

Ĝd(T ) = λ̂dF̂Y01|D=d + (1− λ̂d)T,

Ĉd(T ) =
P̂ (D10 = d)Ĥd ◦ Ĝd(T )− P̂ (D11 = d)F̂Y11|D=d

P̂ (D10 = d)− P̂ (D11 = d)
.

To estimate bounds for FY11(d)|C , we use

B̂d(y) = sup
y′≤y

Ĉd

(
T̂ d

)
(y′), B̂d(y) = inf

y′≥y
Ĉd

(
T̂ d

)
(y′).

Therefore, to estimate bounds for the LATE and QTE, we use

∆̂ =

∫
ydB̂1(y)−

∫
ydB̂0(y), ∆̂ =

∫
ydB̂1(y)−

∫
ydB̂0(y),

τ̂ q = B̂1
−1(q)− B̂

−1

0 (q), τ̂ q = B̂
−1

1 (q)− B̂0
−1(q).

When P̂ (D00 = 0) ∈ {0, 1} or P̂ (D10 = 0) ∈ {0, 1}, the bounds on ∆ and τq are de�ned

similarly, but instead of B̂d and B̂d, we use the empirical counterparts of the bounds on

FY11(d)|C given by Equation (4).

Let B∆ = (∆,∆) and Bτq = (τ q, τ q)
′, and let B̂∆ and B̂τq be the corresponding estimators.

Theorem 5.2 below establishes the asymptotic normality and the validity of the bootstrap for

both B̂∆ and B̂τq , for q ∈ Q ⊂ (0, 1), where Q is de�ned as follows. First, when P (D00 =

0) ∈ {0, 1}, P (D10 = 0) = 1,6 or λ0 > 1, we merely let Q = (0, 1). When λ0 < 1, we

have to exclude small and large q from Q. This is because the (true) bounds put mass at

the boundaries y or y of the support of Y . Similarly, the estimated bounds put mass on the

estimated boundaries, which must be estimated. Because estimated boundaries typically have

non-normal limit distribution, the asymptotic distribution of the bounds of the estimated QTE

will also be non-normal. We thus restrict ourselves to (q, q), with q = B0(y) and q = B0(y).

6Assumption 4 rules out P (D10 = 0) = 0
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Another issue is that the bounds might be irregular at some q ∈ (0, 1), because they include

in their de�nitions the kinked functions M0 and m1.
7 Let

q1 =
µ1FY11|D=1 ◦ F−1

Y01|D=1( 1
λ1

)− 1

µ1 − 1
, q2 =

µ1FY11|D=1 ◦ F−1
Y01|D=1(1− 1

λ1
)

µ1 − 1

denote the two points at which the bounds can be kinked. When λ0 < 1, we restrict ourselves

to Q = (q, q)\{q1, q2}. Note that q1 and q2 may not belong to (q, q), depending on λ1 and µ1,

so that Q may in fact be equal to (q, q).

Theorem 5.2 relies on the following technical assumption, which involves the bounds rather

than the true cdf since we are interested in estimating these bounds. Note that the strict

monotonicity requirement is only a slight reinforcement of Assumption 7.

Assumption 17 (Technical conditions for inference 2)

For d ∈ {0, 1}, the sets Sd = [B−1
d (q), B−1

d (q)] ∩ S(Y ) and Sd = [B
−1
d (q), B

−1
d (q)] ∩ S(Y ) are

not empty. The bounds Bd and Bd are strictly increasing on Sd and Sd. Their derivative,

whenever they exist, are strictly positive.

Theorem 5.2 Suppose that Assumptions 1-5, 7, 15-17 hold and q ∈ Q. Then B̂∆ and B̂τq are

root-n consistent and asymptotically normal. Moreover, the bootstrap is consistent for both.

To construct con�dence intervals of level 1−α for ∆ (resp. τq), one can use the lower bound of

the two-sided (bootstrap) con�dence interval of level 1−α of ∆ (resp. τq), and the upper bound

of the two-sided (bootstrap) con�dence interval of ∆ (resp. τq). Such con�dence intervals are

asymptotically valid but conservative. Because ∆ < ∆ (resp. τq < τq), a con�dence interval

on ∆ (resp. τq) could alternatively be based on one-sided con�dence intervals of level 1 − α
on ∆ and ∆ (resp τq and τq).

8

Those results can easily be generalized to the conditional IV-CIC estimands presented in

Section 4.1, provided covariates are discrete. Let ∆x denote the LATE among compliers in

the X = x cell. Let ∆̂x denote its plug-in estimator in cells such that 0 < P (D01 = 1|X =

x) = P (D00 = 1|X = x) < 1, and let B̂∆x =
(

∆̂x, ∆̂x

)′
denote the plug-in estimators of

its bounds when P (D01 = 1|X = x) 6= P (D00 = 1|X = x). One can generalize Theorems

7This problem does not arise when λ0 > 1. Kinks are possible only at 0 or 1 in this case.
8As shown in Imbens & Manski (2004), such con�dence intervals su�er however from a lack of uniformity,

since their coverage rate falls below the nominal level when one gets close to point identi�cation, i.e. when

λd → 1. The solutions to this problem suggested by Imbens & Manski (2004) or Stoye (2009) require that

bounds converge uniformly towards normal distributions. In Theorem 5.2, we only show pointwise convergence,

not uniform convergence. Uniform convergence is likely to fail for QTE because of the possible kinks of Bd

and Bd at the points q1 or q2, which themselves depend on the underlying data generating process.
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5.1 and 5.2 to show that ∆̂x and B̂∆x are root-n consistent, asymptotically normal, and the

bootstrap is consistent for both of them. If 0 < P (D01 = 1|X) = P (D00 = 1|X) < 1 almost

surely, we de�ne ∆̂ as a weighted average of ∆̂x, using the sample equivalent of the density

de�ned in Lemma 4.1 as weights. Those estimated weights are consistent and asymptotically

normal. One can therefore show that ∆̂ is root-n consistent, asymptotically normal, and the

bootstrap is consistent for it. If for some x we do not have 0 < P (D01 = 1|X = x) =

P (D00 = 1|X = x) < 1, we de�ne ∆̂ as a weighted average of ∆̂x or ∆̂x (depending on

whether 0 < P (D01 = 1|X = x) = P (D00 = 1|X = x) < 1 or not in each X = x cell),

using the same weights as above. Similarly, we de�ne ∆̂ as a weighted average of ∆̂x or ∆̂x.

Let B̂∆ =
(

∆̂, ∆̂
)′
. Since the estimated weights are consistent, one can also show that B̂∆

is root-n consistent, asymptotically normal, and the bootstrap is consistent for it. A similar

reasoning shows that estimates of QTE derived from the conditional IV-CIC model are root-n

consistent, asymptotically normal, and the bootstrap is consistent for them.

So far, we have implicitly considered that we know whether point identi�cation or partial

identi�cation holds, which is not the case in practice. This is an important issue, since the

estimators and the way con�dence intervals are constructed di�er in the two cases. Abstracting

from extreme cases where P (Dgt = d) = 0, testing point identi�cation is simply equivalent to

testing λ0 = 1 versus λ0 6= 1. λ̂0 is a root-n consistent estimator. Therefore, one can conduct

asymptotically valid inference by checking �rst whether |λ̂0−1| ≤ cn, with (cn)n∈N a sequence

satisfying cn → 0,
√
ncn → ∞, and then applying either the point or partially identi�ed

framework. Such a pretest ensures that asymptotically, the probability of conducting inference

under the wrong maintained assumption vanishes to 0. Inference following this pretest is

therefore valid. Such a prestet is similar to procedures recently developed for inequality

selection in moment inequality models (see for instance Andrews & Soares, 2010). In the

conditional IV-CIC model, one must test whether P (D01 = 1|X) = P (D00 = 1|X) almost

surely in order to assess whether one can use Theorem 4.1. If X is discrete, one can test for

this by running a saturated regression of D on X and T among control group observations,

and testing for the joint signi�cance of the T ×X coe�cients. The resulting F-statistic should

also be compared with a sequence (cn)n∈N satisfying cn → 0 and
√
ncn → ∞ and not to its

standard critical values, to account for pretesting. In the moment inequality literature, the

choice of cn = ln(ln(n))/
√
n has often been advocated (see Andrews & Soares, 2010), so we

will stick to it in our application.
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6 Applications

6.1 Property rights and labor supply

Between 1996 and 2003, the Peruvian government issued property titles to over 1.2 million

urban households, the largest titling program targeted to urban squatters in the developing

world. Field (2007) examines the labor market e�ects of increases in tenure security resulting

from the program. Tenure insecurity in Peru encompasses both fear of eviction by the govern-

ment and fear of property theft by other residents. Such concerns might remove individuals

from the labor force. In a nationwide survey of Peruvian households cited by the author, 47%

of untitled households report keeping someone at home for property protection.

To isolate the causal e�ect of property rights, the author uses a survey conducted in 2000, and

exploits two sources of variation in exposure to the titling program at that time. Firstly, this

program took place at di�erent dates in di�erent neighborhoods. In 2000, it had approximately

reached 50% of targeted neighborhoods. Secondly, it only impacted squatters, i.e. households

without a property title prior to the program. The author can therefore construct four groups

of households: squatters in neighborhoods reached by the program before 2000, squatters in

neighborhoods reached by the program after 2000, non- squatters in neighborhoods reached

by the program before 2000, and non- squatters in neighborhoods reached by the program

after 2000. The share of households with a property title in each group is shown in Table 4.

Table 4: Share of households with a property right

Reached after 2000 Reached before 2000

Squatters 0% 71%

Non-squatters 100% 100%

In Table 5 of the paper, the author estimates IV-DID regressions to capture the e�ect of having

a property right on the total number of hours worked per week by the household. Whether the

neighborhood was reached before or after 2000 plays the role of time, while squatters and non-

squatters are the two groups. In what follows, we use the same data to measure the e�ect of

property rights using our IV-CIC model instead of linear IV-DID regressions. As no squatters

have a property right in neighborhoods reached after 2000, P (D10 = 1) = 0, so FY11(1)|C(y)

is identi�ed by FY11|D=1|C(y) as shown in Equation (3). Moreover, as 100% of non- squatters

have a property title in the two groups of neighborhoods, P (D00 = 1) = P (D10 = 1) = 1. We

can therefore use Theorem 3.2 to identify FY11(0)|C(y). The resulting estimates are displayed

in Figure 1. F̂Y11(0)|C stochastically dominates F̂Y11(1)|C , meaning that property rights have a
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positive impact on the number of hours worked, over the entire distribution of hours.
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Figure 1: Estimated cdf of Y (0) and Y (1) for compliers.

As per our IV-CIC model, the LATE of titling on hours of work is equal to 23.3. This point

estimate is 17% lower than the one we would have obtained through an IV-DID regression

(27.2), and the di�erence between the two is statistically signi�cant (p-value=0.02).9 Inter-

estingly, the quantile treatment e�ects on the level of the outcome are fairly constant, most of

them being close to +20 hours of work per week. This implies that the e�ect of the treatment

is highly heterogeneous in relative terms. Figure 2 shows quantile treatment e�ects on the

logarithm of the outcome. Being granted a property title increases labor supply by more than

40% for households at the 25th percentile of the distribution of hours worked per week, and by

10% only for households at the 75th percentile. The di�erence between the two is marginally

signi�cant (p-value=0.12). An explanation for this pattern could go as follows. The main

source of variation in hours worked per week at the household level is presumably the size of

the household. In every household, only one household member has to stay home to look after

the household's residence, irrespective of the household size. Being granted a property title

therefore allows this household member to increase her labor supply, but has no e�ect on the

9Our IV-DID LATE does not match exactly the �Tilted� coe�cient in the second column of Table 5 in

Field (2007). We estimated the same regression as the author, but without control variables. This is to ensure

that the resulting coe�cient is comparable with our IV-CIC LATE, which is estimated without controls. Our

IV-CIC model allows for discrete controls, but here the sample size is too small to include as many as the

author did.
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labor supply of other members. Knowing this pattern of heterogeneity might have substantial

consequences on social choice. A utilitarian social planner will indeed be more prone to im-

plementing a titling program with heterogeneous than with constant relative e�ects, provided

utility of agents is concave in individual consumption.
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Figure 2: Estimated QTE on the logarithm of number of hours worked.

6.2 Returns to education and the Sekolah Dasar INPRES school construc-

tion program

In 1973, the Indonesian government launched a major school construction program, the so-

called Sekolah Dasar INPRES program. It led to the construction of more than 61,000 primary

schools between 1973-1974 and 1978-1979, an average of 2 schools per 1,000 children. Du�o

(2001) uses the 1995 SUPAS census to measure the e�ect of this program on completed years

of education in a �rst step, and returns to education in a second step. In what follows, we

only consider the latter set of results.

There was substantial variation in treatment intensity across regions, as the government tried

to allocate more schools to districts with low initial enrolment. The author thus constructs

two groups of high and low program regions, by regressing the number of schools constructed

on the number of children in each region. High treatment regions are those with a positive

residual in that regression, as they received more schools than what their population predicts.

Exposure to treatment also varied according to birth cohort: children between 2 and 6 in 1974

were exposed to the treatment as they were to enter primary school after the program was
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launched, while children between 12 and 17 in 1974 were not exposed as they were to have

�nished primary school by that time.

Number of years of education is larger for the second cohort in the two groups of regions, as

schools were constructed in both groups. But the di�erence is larger in high treatment regions

because more schools were constructed there. The author exploits this pattern to measure

returns to education. She uses �rst a simple IV-DID regression in which birth cohort plays

the role of the time variable, while low and high treatment regions are the two groups. The

resulting coe�cient, which we can infer from Table 3, is imprecisely estimated, so the author

turns to richer speci�cations. All of them include cohort and region of birth �xed e�ects,

so one can show that the resulting coe�cient is a weighted average of Wald-DID across all

possible pairs of regions and birth cohorts.

In what follows, we use the same data to measure returns to education using our IV-CIC

model. As it does not allow for a multivariate treatment, we consider a dummy for whether an

individual completed primary education as our treatment variable. The variable used in Du�o

(2001) to construct completed years of education is a categorical variable (completed primary

school, middle school...), with 9 categories. As the program was a primary school construction

program, the larger increase in completed years of education in high program regions mostly

comes from a larger increase in the share of individuals completing primary school. For

instance, the share of individuals completing middle school did not evolve di�erently in the

two groups of regions. Therefore, it seems that our binary treatment captures most of the

variation in educational attainment induced by the program.

Table 5: Share of individuals completing primary school

Older cohort Younger cohort

High treatment regions 81.2% 90.0%

Low treatment regions 89.8% 94.3%

Table 5 shows that the share of individuals completing primary school increased more in high

than in low treatment regions. As 0 < P̂ (D10 = d) 6= P̂ (D00 = d) for every d ∈ {0, 1}
and |λ̂0 − 1| = 0.44 > cn, we use partial identi�cation results of Theorem 3.3 to estimate

bounds for FY11(0)|C(y) and FY11(1)|C(y). The resulting estimates are displayed in Figure 3.

The bounds are wide. The resulting bounds for QTE are uninformative, as 0 always lies

between τ̂ q and τ̂ q. Our IV-CIC model does not allow us to draw informative conclusions on

returns to education from the natural experiment analyzed in Du�o (2001). This is because

the increase in treatment rate was not much larger in high than in low treatment regions. As
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a result, µ̂1 = 1.11 is not much larger than λ̂1 = 1.05, and µ̂0 = 0.53 is not much smaller than

λ̂0 = 0.56. In Appendix C, we study an application in which our bounds are still informative

despite the fact that the treatment rate substantially increases in the control group, because

µ̂0 is much smaller than λ̂0.
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Figure 3: Estimated bounds on the cdf of Y (0) and Y (1) for compliers.

This application shows that when exposition to treatment substantially changes in the control

group as well, using our IV-CIC model may result in wide and uninformative bounds. In such

instances, point identi�cation can still be achieved using IV-DID, but this strategy relies on

more stringent conditions than our IV-CIC model (de Chaisemartin, 2013). Besides common

trend conditions on potential outcomes, a common trend condition on potential treatments

is also needed. Here, the share of individuals completing primary school increased by 4.5

percentage points in the low treatment regions. IV-DID then requires that the share of in-

dividuals completing primary school would have also increased by 4.5 percentage points in

high treatment regions if as many schools had been constructed there than in low treatment

regions. It also requires an homogeneity condition on the returns to education across the two

groups of regions. This may not hold if for instance the returns to education are heterogeneous

across local labor markets.

Finally, another strategy to recover point identi�cation would be to look for another control

group in which educational attainment did not change over time, and then use our IV-CIC

model. One could for instance use regions in which primary school completion rate changed

the least across the two cohorts.
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7 Conclusion

In this paper, we develop an IV-CIC model to identify treatment e�ects when the treatment

rate increases more in some groups than in others, for instance following a legislative change.

Our model brings several improvements to IV-DID, the model currently used in the literature

to identify treatment e�ects in such settings. It does not require common trend assumptions,

it is invariant to monotonic transforms of the outcome, and it does not impose that some

subgroups of observations in the treatment and in the control groups have the same treatment

e�ects.

We show that when the treatment rate is stable between period 0 and 1 in the control group, a

LATE and QTE among compliers are point identi�ed under our IV-CIC assumptions. When

the treatment rate also changes between period 0 and 1 in the control group, the same LATE

and QTE are partially identi�ed. The smaller the change in the treatment rate in the control

group, the tighter the bounds. We conduct inference on treatment e�ects and sharp bounds

estimators by proving their asymptotic normality and showing the validity of the bootstrap.
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A Main proofs

Even though it appears after Theorems 3.1 and 3.2 in the text, we start by proving Lemma

3.1, as the two aforementioned theorems follow from this lemma.

Lemma 3.1

We only prove the formula for d = 0, the reasoning being similar for d = 1. We �rst show that

FY11(0)|C(y) =
P (D10 = 0)FY11(0)|V <v0(0)(y)− P (D11 = 0)FY11|D=0(y)

P (D10 = 0)− P (D11 = 0)
. (6)

To this aim, note �rst that

P (C|G = 1, T = 1, V < v0(0)) =
P (V ∈ [v1(1), v0(0))|G = 1, T = 1)

P (V < v0(0)|G = 1, T = 1)

=
P (V < v0(0)|G = 1, T = 1)− P (V < v1(1)|G = 1, T = 1)

P (V < v0(0)|G = 1, T = 1)

=
P (V < v0(0)|G = 1, T = 0)− P (V < v1(1)|G = 1, T = 1)

P (V < v0(0)|G = 1, T = 0)

=
P (D10 = 0)− P (D11 = 0)

P (D10 = 0)
.

The third equality stems from Assumption 3, and P (D10 = 0) > 0 because of Assumption 5.

Then

FY11(0)|V <v0(0)(y) = P (V ∈ [v1(1), v0(0))|G = 1, T = 1, V < v0(0))FY11(0)|V ∈[v1(1),v0(0))(y)

+P (V < v1(1)|G = 1, T = 1, V < v0(0))FY11|V <v1(1)(y)

=
P (D10 = 0)− P (D11 = 0)

P (D10 = 0)
FY11(0)|C(y) +

P (D11 = 0)

P (D10 = 0)
FY11|D=0(y)

This proves (6), and thus the second point of the lemma.

To prove the �rst point of the lemma, we show that for all y ∈ S(Y11(0)|V < v0(0)),

FY11(0)|V <v0(0) = FY10|D=0 ◦ F−1
Y00|D=0 ◦ FY01(0)|V <v0(0). (7)

By Assumption 3, (U0,1{V < v0(0)}) ⊥⊥ T |G, which implies

U0 ⊥⊥ T |G,V < v0(0).

As a result, for all (g, t) ∈ {0, 1}2,

FYgt(0)|V <v0(0)(y) = P (h0(U0, t) ≤ y|G = g, T = t, V < v0(0))

= P (U0 ≤ h−1
0 (y, t)|G = g, T = t, V < v0(0))

= P (U0 ≤ h−1
0 (y, t)|G = g, V < v0(0))

= FU0|G=g,V <v0(0)(h
−1
0 (y, t)).
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The second point of Assumption 4 combined with Assumptions 1 and 3 implies that FU0|G=g,V <v0(0)

is strictly increasing. Hence, its inverse exists and for all q ∈ (0, 1),

F−1
Ygt(0)|V <v0(0)(q) = h0

(
F−1
U0|G=g,V <v0(0)(q), t

)
.

This implies that for all y ∈ S(Yg1(0)|V < v0(0)),

F−1
Yg0(0)|V <v0(0) ◦ FYg1(0)|V <v0(0)(y) = h0(h−1

0 (y, 1), 0), (8)

which is independent of g.

Now, we have

S(Y10|D = 0) = S(Y00|D = 0)

⇒ S(Y10(0)|V < v0(0)) = S(Y00(0)|V < v0(0))

⇒ S(h0(U0, 0)|V < v0(0), G = 1, T = 0) = S(h0(U0, 0)|V < v0(0), G = 0, T = 0)

⇒ S(U0|V < v0(0), G = 1) = S(U0|V < v0(0), G = 0)

⇒ S(h0(U0, 1)|V < v0(0), G = 1, T = 1) = S(h0(U0, 1)|V < v0(0), G = 0, T = 1)

⇒ S(Y11(0)|V < v0(0)) = S(Y01(0)|V < v0(0)),

where the third and fourth implications are obtained combining Assumptions 1 and 3. There-

fore, for all y ∈ S(Y11(0)|V < v0(0)),

F−1
Y10(0)|V <v0(0) ◦ FY11(0)|V <v0(0)(y) = F−1

Y00(0)|V <v0(0) ◦ FY01(0)|V <v0(0)(y).

This proves (7), because V < v0(0) is equivalent to D = 0 when T = 0, and because the

second point of Assumption 4 implies that F−1
Y10|D=0 is strictly increasing on (0, 1).

Finally, we show that

FY01(0)|V <v0(0)(y) = λ0FY01|D=0(y) + (1− λ0)FY01(0)|TC(y). (9)

Suppose �rst that λ0 ≤ 1. Then, v0(1) ≤ v0(0) and TC is equivalent to the event V ∈
[v0(1), v0(0)). Moreover, reasoning as for P (C|G = 1, V < v0(0)), we get

λ0 =
P (V < v0(1)|G = 0)

P (V < v0(0)|G = 0)
= P (V < v0(1)|G = 0, V < v0(0)).

Then

FY01(0)|V <v0(0)(y) = P (V < v0(1)|G = 0, V < v0(0))FY01(0)|V <v0(1)(y)

+P (V ∈ [v0(1), v0(0))|G = 0, V < v0(0))FY01|V ∈[v0(1),v0(0))(y)

= λ0FY01|D=0(y) + (1− λ0)FY01(0)|TC(y).
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If λ0 > 1, v0(1) > v0(0) and TC is equivalent to the event V ∈ [v0(0), v0(1)).

1

λ0
= P (V < v0(0)|G = 0, V < v0(1))

and

FY01|D=0(y) =
1

λ0
FY01(0)|V <v0(0)(y) +

(
1− 1

λ0

)
FY01(0)|TC(y),

so that we also get (9).

Finally, the �rst point of the lemma follows by combining (6), (7) and (9).

Theorem 3.1

The proof follows directly from Lemma 3.1, by noting that λ0 = λ1 = 1 when P (D00 = d) =

P (D01 = d) > 0.

Theorem 3.2

Assume that P (D00 = 0) = P (D01 = 0) = 0 (the proof is symmetric when P (D00 = 1) =

P (D01 = 1) = 0). This implies that P (D00 = 1) = P (D01 = 1) > 0, so for FY11(1)|C(y) the

proof directly follows from Lemma 3.1, by noting that λ1 = 1.

For FY11(0)|C(y), one can use the same steps as in the proof of Lemma 3.1 to show that

Equation (6) also holds here:

FY11(0)|C(y) =
P (D10 = 0)FY11(0)|V <v0(0)(y)− P (D11 = 0)FY11|D=0(y)

P (D10 = 0)− P (D11 = 0)
. (10)

Then, let v denote the lower bound of S(V |G = 0). Following similar steps as those used to

establish Equation (8), one can show that for all y ∈ S(Y01(0)|V < v0(0)) = S(Y00(0)|V ≥
v0(0)) = S(Y ),

F−1
Y10(0)|V <v0(0) ◦ FY11(0)|V <v0(0)(y) = h0(h−1

0 (y, 1), 0),

F−1
Y00(1)|V≥v ◦ FY01(1)|V≥v(y) = h1(h−1

1 (y, 1), 0).

Under Assumption 6, this implies that for all y ∈ S(Y ),

FY11(0)|V <v0(0)(y) = FY10(0)|V <v0(0) ◦ F−1
Y00(1)|V≥v ◦ FY01(1)|V≥v(y)

= FY10|D=0 ◦ F−1
Y00|D=1 ◦ FY01|D=1(y), (11)

where the second equality follows from the fact that P (D00 = 1) = P (D01 = 1) = 1. Combin-

ing Equations (10) and (11) yields the result for FY11(0)|C(y).

38



Theorem 3.3

We focus on the case where P (D00 = d) > 0, since the proofs for the case P (D00 = d) = 0 are

immediate.

1. Construction of the bounds.

We only establish the validity of the bounds for d = 0, the reasoning being similar for d = 1.

We start by considering the case where λ0 < 1. We �rst show that in such instances, 0 ≤
T0, G0(T0), C0(T0) ≤ 1 if and only if

T0 ≤ T0 ≤ T0. (12)

Indeed, G0(T0) is included between 0 and 1 if and only if

−λ0FY01|D=0

1− λ0
≤ T0 ≤

1− λ0FY01|D=0

1− λ0
,

while C0(T0) is included between 0 and 1 if and only if

H−1
0 (µ0FY11|D=0)− λ0FY01|D=0

1− λ0
≤ T0 ≤

H−1
0 (µ0FY11|D=0 + (1− µ0))− λ0FY01|D=0

1− λ0
.

Since −λ0FY01|D=0/(1 − λ0) ≤ 0 and (1 − λ0FY01|D=0)/(1 − λ0) ≥ 1, T0, G0(T0) and C0(T0)
are all included between 0 and 1 if and only if

M0

(
H−1

0 (µ0FY11|D=0)− λ0FY01|D=0

1− λ0

)
≤ T0 ≤ m1

(
H−1

0 (µ0FY11|D=0 + (1− µ0))− λ0FY01|D=0

1− λ0

)
. (13)

By composing each term of these inequalities by M0(.) and then by m1(.), we obtain (12)

since M0(T0) = m1(T0) = T0 and M0 ◦m1 = m1 ◦M0.

Now, when λ0 < 1, G0(T0) is increasing in T0, so C0(T0) as well is increasing in T0. Combining

this with (12) implies that for every y′,

C0(T0)(y′) ≤ C0(T0)(y′) ≤ C0(T0)(y′).

Because C0(T0)(y) is a cdf,

C0(T0)(y) = inf
y′≥y

C0(T0)(y′) ≤ inf
y′≥y

C0(T0)(y′). (14)

The lower bound follows similarly.

Let us now turn to the case where λ0 > 1. Using the same reasoning as above, we get that

G0(T0) and C0(T0) are included between 0 and 1 if and only if

λ0FY01|D=0 − 1

λ0 − 1
≤ T0 ≤

λ0FY01|D=0

λ0 − 1
,

λ0FY01|D=0 −H−1
0 (µ0FY11|D=0 + (1− µ0))

λ0 − 1
≤ T0 ≤

λ0FY01|D=0 −H−1
0 (µ0FY11|D=0)

λ0 − 1
.
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The inequalities in the �rst line are not binding since they are implied by those on the second

line. Thus, we also get (13). Hence, using the same argument as previously,

T0 ≤ T0 ≤ T0. (15)

Besides, when λ0 > 1, G0(T0) is decreasing in T0, so that C0(T0) as well is decreasing in T0.

Combining this with (15) implies that for every y, (14) holds as well. This proves the result.

2. Sharpness.

We only consider the sharpness of B0, the reasoning being similar for the upper bound. The

proof is also similar and actually simpler for d = 1. The corresponding bounds are indeed

proper cdf, so that we do not have to consider converging sequences of cdf as we do in case b)

below.

a. λ0 > 1. We show that if Assumptions 4-7 hold, then B0 is sharp. For that purpose, we

construct h̃0, Ũ0, Ṽ such that:

(i) Y = h̃0(Ũ0, T ) when D = 0 and D = 1{Ṽ ≥ vZ(T )};

(ii) h̃0(., t) is strictly increasing for t ∈ {0, 1};

(iii) (Ũ0, Ṽ ) ⊥⊥ T |G;

(iv) F
h̃0(Ũ0,1)|G=0,T=1,Ṽ ∈[v0(0),v0(1))

= T 0.

Point (i) ensures that Equation (1) and Assumption 2 are satis�ed on the observed data.

Because we can always de�ne Ỹ (0) as h̃0(Ũ0, T ) when D = 1 and D̃(z) = 1{Ṽ ≥ vz(T )}
when Z 6= z without contradicting the data and the model, Point (i) is actually su�cient

for Equation (1) and Assumption 2 to hold globally, not only on observed data. Point (ii)

and (iii) ensure that Assumptions 1 and 3 hold. Finally, Point (iv) ensures that the DGP

corresponding to (h̃0, Ũ0, Ṽ ) rationalizes the bound. If (h̃0, Ũ0, Ṽ ) satisfy Assumptions 1-5

and are such that T̃0 = T 0, we can apply Lemma 3.1 to show that the bound is attained.

First, let

h̃0(., 0) = F−1
Y00|D=0 ◦G0(T 0) ◦ F−1

Y01|D=0,

h̃0(., 1) = F−1
Y01|D=0.

Second, let

Ũ0 = (1−D)h̃−1
0 (Y, T )

+D(1− T )(1−G)1{V ∈ [v0(0), v0(1))}Ũ1
0

+DTG1{V ∈ [v1(1), v0(0))}Ũ2
0

+D [1− (1− T )(1−G)1{V ∈ [v0(0), v0(1))} − TG1{V ∈ [v1(1), v0(0))}]U0,
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where Ũ1
0 and Ũ2

0 are two random variables such that S(Ũ1
0 ) = S(Ũ2

0 ) = (0, 1), and

F
Ũ1
0 |G=0,T=0,V ∈[v0(0),v0(1))

= T 0 ◦ F−1
Y01|D=0,

F
Ũ2
0 |G=1,T=1,V ∈(v1(1),v0(0))

= C0(T 0) ◦ F−1
Y01|D=0.

F
Ũ1
0 |G=0,T=0,V ∈[v0(0),v0(1))

is a valid cdf on (0, 1) since (i) T 0 is increasing by Assumption 7

and F−1
Y01|D=0 is also increasing, (ii) limy→y T 0(y) = 0 and limy→y T 0(y) = 1 when λ0 >

1. F
Ũ2
0 |G=0,T=0,V ∈[v0(0),v0(1))

is also a valid cdf on (0, 1) since (i) C0(T 0) is increasing by

Assumption 7 and F−1
Y01|D=0 is also increasing, (ii) C0(T 0) (S(Y )) = (0, 1) when λ0 > 1, as per

the second point of Lemma B.1.

Third, for every u ∈ (0, 1), let

P0(u) = T 0 ◦ F−1
Y01|D=0(u),

P1(u) = C0(T 0) ◦ F−1
Y01|D=0(u),

P2(u) = H0 ◦G0(T 0) ◦ F−1
Y01|D=0(u).

As shown in the proof of Lemma B.5 (lower bound, case 2), Assumption 7 ensures that P0(u),

P1(u), and P2(u) are non di�erentiable at only one point. Moreover, using the fact that

FY01|D=0 =
1

λ0
G0 (T 0) +

(
1− 1

λ0

)
T 0, (16)

H0 ◦G0(T 0) = µ0FY11|D=0 + (1− µ0)C0(T 0), (17)

and T 0, G (T 0), and C0(T 0) are increasing under Assumption 7, one can show that

0 ≤
(

1− 1

λ0

)
P ′0(u) ≤ 1,

0 ≤ (1− µ0)P ′1(u)

P ′2(u)
≤ 1,

for any u at which P0(.), P1(.), and P2(.) are di�erentiable, and P ′2(u) > 0. Then, let BTC

and BC be two Bernoulli random variables such that for every u ∈ (0, 1),

P (BTC = 1|Ũ0 = u,D = 0, G = 0, T = 1) =

(
1− 1

λ0

)
P ′0(u),

P (BC = 1|Ũ0 = u,D = 0, G = 1, T = 0) =
(1− µ0)P ′1(u)

P ′2(u)
,

with the convention that P (BTC = 1|Ũ0 = u,D = 0, G = 0, T = 1) and P (BC = 1|Ũ0 =

u,D = 0, G = 1, T = 0) are equal to 0 at the point at which P0(u), P1(u), and P2(u) are

not di�erentiable, and P (BC = 1|Ũ0 = u,D = 0, G = 1, T = 0) = 0 when P ′2(u) = 0. The

�rst convention is innocuous as it applies to a 0 Lebesgue measure set. As we shall see later,
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the second convention is also innocuous, because when P ′2(u) = 0, Equation (17) implies that

P ′1(u) = 0 as well.

Finally, let

Ṽ = (1−D)(1−G)T
[
BTC Ṽ

1 + (1−BTC)Ṽ 2
]

+(1−D)G(1− T )
[
BC Ṽ

3 + (1−BC)Ṽ 4
]

+ (1− (1−D) [(1−G)T +G(1− T )])V,

where Ṽ 1, Ṽ 2, Ṽ 3, and Ṽ 4 are such that S(Ṽ 1) = S(V ) ∩ [v0(0), v0(1)), S(Ṽ 2) = S(V ) ∩
(−∞, v0(0)), S(Ṽ 3) = S(V ) ∩ (v1(1), v0(0)), S(Ṽ 4) = S(V ) ∩ (−∞, v1(1)), and

f
Ṽ 1|G=0,T=1,D=0,BTC=1,Ũ0

(v|u) = f
V |G=0,T=0,V ∈[v0(0),v0(1)),Ũ0

(v|u),

f
Ṽ 2|G=0,T=1,D=0,BTC=0,Ũ0

(v|u) = f
V |G=0,T=0,V <v0(0),Ũ0

(v|u),

f
Ṽ 3|G=1,T=0,D=0,BC=1,Ũ0

(v|u) = f
V |G=1,T=1,V ∈[v1(1),v0(0)),Ũ0

(v|u),

f
Ṽ 4|G=1,T=0,D=0,BC=0,Ũ0

(v|u) = f
V |G=1,T=1,V <v1(1),Ũ0

(v|u).

We shall now show that (h̃0(., 0), h̃0(., 1), Ũ0, Ṽ ) satis�es (i), (ii), (iii), and (iv). By construc-

tion, Point (i) is satis�ed. Moreover, it follows from Assumption 4 that h̃0(., 1) is strictly

increasing on (0, 1). Besides, G0(T 0) ◦ F−1
Y01|D=0 is strictly increasing on (0, 1) and included

between 0 and 1 as shown in the �rst point of Lemma B.1. F−1
Y00|D=0 is also strictly increasing

on (0, 1) by Assumption 4. Therefore, h̃0(., 0) is also strictly increasing on (0, 1), and Point

(ii) is satis�ed.

Then, we check Point (iii). We show that it holds in the control group. For that purpose, we

use Bayes law to write

fŨ0,Ṽ |G=0,T=t(u, v)

= P (Ṽ < v0(1)|G = 0, T = t)[P (Ṽ < v0(0)|G = 0, T = t, Ṽ < v0(1))fŨ0|G=0,T=t,Ṽ <v0(0)
(u)fṼ |G=0,T=t,Ṽ <v0(0),Ũ0

(v|u)

+P (Ṽ ∈ [v0(0), v0(1))|G = 0, T = t, Ṽ < v0(1))fŨ0|G=0,T=t,Ṽ ∈[v0(0),v0(1))(u)fṼ |G=0,T=t,Ṽ ∈[v0(0),v0(1)),Ũ0
(v|u)]

+P (Ṽ ≥ v0(1)|G = 0, T = t)fŨ0,Ṽ |G=0,T=t,Ṽ≥v0(1)
(u, v), (18)

and we show that all elements in the right-hand side of the previous display are equal for

t = 0 and t = 1.

We �rst evaluate all of these quantities when T = 1. First, it follows from the de�nition of Ṽ

that

P (Ṽ < v0(1)|G = 0, T = 1) = P (D01 = 0). (19)
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Then,

P (Ũ0 ≤ u|G = 0, T = 1, Ṽ < v0(1)) = P (Ũ0 ≤ u|G = 0, T = 1, D = 0)

= P (h̃−1
0 (Y, 1) ≤ u|G = 0, T = 1, D = 0)

= P (Y ≤ F−1
Y01|D=0(u)|G = 0, T = 1, D = 0)

= u.

Therefore,

f
Ũ0|G=0,T=1,Ṽ <v0(1)

(u) = 1.

Then, we have, almost everywhere,

f
Ũ0,1{Ṽ ∈[v0(0),v0(1))}|G=0,T=1,Ṽ <v0(1)

(u, 1)

= P (Ṽ ∈ [v0(0), v0(1))|G = 0, T = 1, Ṽ < v0(1), Ũ0 = u)f
Ũ0|G=0,T=1,Ṽ <v0(1)

(u)

= P (BTC = 1|G = 0, T = 1, D = 0, Ũ0 = u)

=

(
1− 1

λ0

)
P ′0(u). (20)

The second equality follows from the de�nition of Ṽ , and from f
Ũ0|G=0,T=1,Ṽ <v0(1)

(u) = 1.

Equation (20) and the fact that P ′0 is a density imply that

P (Ṽ ∈ [v0(0), v0(1))|G = 0, T = 1, Ṽ < v0(1)) = 1− 1

λ0
, (21)

f
Ũ0|G=0,T=1,Ṽ ∈[v0(0),v0(1))

(u) = P ′0(u), (22)

and

P (Ṽ < v0(0)|G = 0, T = 1, Ṽ < v0(1)) =
1

λ0
, (23)

f
Ũ0|G=0,T=1,Ṽ <v0(0)

(u) = λ0 − (λ0 − 1)P ′0(u). (24)

Next, we have

f
Ṽ |G=0,T=1,Ṽ ∈[v0(0),v0(1)),Ũ0

(v|u) = f
Ṽ 1|G=0,T=1,D=0,BTC=1,Ũ0

(v|u),

= f
V |G=0,T=0,V ∈[v0(0),v0(1)),Ũ0

(v|u), (25)

and

f
Ṽ |G=0,T=1,Ṽ <v0(0),Ũ0

(v|u) = f
Ṽ 2|G=0,T=1,D=0,BTC=0,Ũ0

(v|u)

= f
V |G=0,T=0,V <v0(0),Ũ0

(v|u). (26)

Then, we evaluate all of these quantities when T = 0. First, notice that

P (Ṽ < v0(1)|G = 0, T = 0) = P (V < v0(1)|G = 0, T = 0)

= P (V < v0(1)|G = 0, T = 1)

= P (D01 = 0). (27)
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The �rst equality follows from the de�nition of Ṽ and the second from the fact V satis�es

Assumption 3. One can use similar arguments to show that

P (Ṽ ∈ [v0(0), v0(1))|G = 0, T = 0, Ṽ < v0(1)) = 1− 1

λ0
, (28)

P (Ṽ < v0(0)|G = 0, T = 0, Ṽ < v0(1)) =
1

λ0
. (29)

Then, it follows from the de�nition of Ṽ and Ũ0 that

f
Ũ0|G=0,T=0,Ṽ ∈[v0(0),v0(1))

(u) = f
Ũ1
0 |G=0,T=0,V ∈[v0(0),v0(1))

(u) = P ′0(u). (30)

Next,

P (Ũ0 ≤ u|G = 0, T = 0, Ṽ < v0(0)) = P (Ũ0 ≤ u|G = 0, T = 0, D = 0)

= P (h̃−1
0 (Y, 0) ≤ u|G = 0, T = 0, D = 0)

= P (Y ≤ F−1
Y00|D=0 ◦G0(T 0) ◦ F−1

Y01|D=0(u)|G = 0, T = 0, D = 0)

= G0(T 0) ◦ F−1
Y01|D=0(u)

= λ0u− (λ0 − 1)P0(u),

where the last equality follows from (16). This implies that

f
Ũ0|G=0,T=0,Ṽ <v0(0)

(u) = λ0 − (λ0 − 1)P ′0(u). (31)

Then, it follows from the de�nition of Ṽ that

f
Ṽ |G=0,T=0,Ṽ ∈[v0(0),v0(1)),Ũ0

(v|u) = f
V |G=0,T=0,V ∈[v0(0),v0(1)),Ũ0

(v|u), (32)

f
Ṽ |G=0,T=0,Ṽ <v0(0),Ũ0

(v|u) = f
V |G=0,T=0,V <v0(0),Ũ0

(v|u). (33)

Finally,

f
Ũ0,Ṽ |G=0,T=0,Ṽ≥v0(1)

(u, v) = fU0,V |G=0,T=0,V≥v0(1)(u, v)

= fU0,V |G=0,T=1,V≥v0(1)(u, v)

= f
Ũ0,Ṽ |G=0,T=1,Ṽ≥v0(1)

(u, v), (34)

where the �rst and last equality follow from the de�nition of (Ũ0, Ṽ ), while the second equality

follows from the fact (U0, V ) satis�es Assumption 3.

Finally, combining Equation (18) with Equations (19) and (27), (21) and (28), (23) and (29),

(22) and (30), (24) and (31), (25) and (32), (26) and (33), and (34), we get that

f
Ũ0,Ṽ |G=0,T=1

(u, v) = f
Ũ0,Ṽ |G=0,T=0

(u, v).
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This shows that (iii) holds in the control group. Showing that it also holds in the treatment

group relies on a very similar reasoning, so we skip this part of the proof due to a concern for

brevity.

b. λ0 < 1. The idea is similar as in the previous case. A di�erence, however, is that

when λ0 < 1, T 0 is not a proper cdf, but a defective one, since limy→y T 0(y) < 1. As a

result, we cannot de�ne a DGP such that T̃0 = T 0, However, by Lemma B.2, there exists

a sequence (T k0)k of cdf such that T k0 → T 0, G0(T k0) is an increasing bijection from S(Y )

to (0, 1) and C0(T k0) is increasing and onto (0, 1). We can then de�ne a sequence of DGP

(h̃k0(., 0), h̃k0(., 1), Ũk0 , Ṽ
k) such that Points (i) to (iii) listed above hold for every k, and such

that T̃ k0 = T k0. Since T
k
0(y) converges to T 0(y) for every y in

◦
S(Y ), we thus de�ne a sequence

of DGP such that T̃ k0 can be arbitrarily close to T 0 on
◦
S(Y ) for su�ciently large k. Since

C0(.) is continuous, this proves that B0 is sharp on
◦
S(Y ).

In what follows, we exhibit h̃k0(., 0) and h̃k0(., 1) satisfying (i), as well as distributions of Ũk0

for all relevant subpopulations which are a) compatible with the data, b) satisfy (iii), and c)

reach the bound. We do not not exhibit (Ũk0 , Ṽ
k) as we did in the previous proof, to avoid

repeating twice similar arguments.

Let

h̃k0(., 1) = G0(T k0)−1

h̃k0(., 0) = F−1
Y00|D=0

h̃k0(., 1) is strictly increasing on (0, 1) since G0(T k0) is an increasing bijection on (0, 1) as shown

in Lemma B.2. h̃k0(., 0) is strictly increasing on (0, 1) under Assumption 4. Therefore, (i) is

veri�ed.

Let us consider �rst the distribution of Ũk0 among untreated observations in the control group

in period 1. It follows from Bayes rule that

F
Ũk
0 |G=0,T=1,Ṽ <v0(0)

= λ0FŨk
0 |G=0,T=1,Ṽ <v0(1)

+ (1− λ0)F
Ũk
0 |G=0,T=1,Ṽ ∈[v0(1),v0(0))

(35)

Given h̃k0(., 1), to have T̃ k0 = T k0, we must have

F
Ũk
0 |G=0,T=1,Ṽ ∈[v0(1),v0(0))

= T k0 ◦G0(T k0)−1.

This de�nes a valid cdf since T k0 is a cdf and G0(T k0)−1 is increasing and onto S(Y ). It can be

achieved by constructing Ṽ using an appropriate Bernoulli random variable to split untreated

observations in the control group in period 0 between some for which Ṽ ∈ [v0(1), v0(0)), and

some for which Ṽ < v0(1), exactly as we did for λ0 > 1.
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Given h̃k0(., 1), and the fact h̃k0(Ũk0 , 1) = Y for all observations such that G = 0, T = 1, Ṽ <

v0(1), a few computations yield

F
Ũk
0 |G=0,T=1,Ṽ <v0(1)

= FY01|D=0 ◦G0(T k0)−1.

Plugging the last two equations into (35) �nally yields F
Ũk
0 |G=0,T=1,Ṽ <v0(0)

= I, where I

denotes the identity function on [0, 1].

Now, let us turn to untreated observations in the control group in period 0. Given h̃k0(., 0),

and the fact h̃k0(Ũk0 , 0) = Y for all observations such that G = 0, T = 0, Ṽ < v0(0), a few

computations yield F
Ũk
0 |G=0,T=0,Ṽ <v0(0)

= I. Since Y (0) is not observed for observations such

that G = 0, T = 1, Ṽ ∈ [v0(1), v0(0)), the data does not impose any constraint on their U0, so

we can set

F
Ũk
0 |G=0,T=0,Ṽ ∈[v0(1),v0(0))

= T k0 ◦G0(T k0)−1.

Therefore, the distributions of Ũk0 |G = 0, T = t, Ṽ < v0(1) and Ũk0 |G = 0, T = t, Ṽ ∈
[v0(1), v0(0)) satisfy (iii).

Then, let us consider untreated observations in the treatment group in period 1. Using the

de�nition of h̃k0(., 1) and the fact h̃k0(Ũk0 , 1) = Y for all observations such that G = 1, T =

1, Ṽ < v1(1), one can show after a few computations that

F
Ũk
0 |G=1,T=1,Ṽ <v1(1)

= FY11|D=0 ◦G0(T k0)−1.

Since Y (0) is not observed for observations such that G = 1, T = 1, Ṽ ∈ [v1(1), v0(0)), the

data does not impose any constraint on their U0, so we can set

F
Ũk
0 |G=1,T=1,Ṽ ∈[v1(1),v0(0))

= C0(T k0) ◦G0(T k0)−1.

This de�nes a valid cdf, as shown in Points 2 and 3 of Lemma B.2.

Finally, let us consider untreated observations in the treatment group in period 0. It follows

from Bayes rule that we must have

F
Ũk
0 |G=1,T=0,Ṽ <v0(0)

= µ0FŨk
0 |G=1,T=0,Ṽ <v1(1)

+ (1− µ0)F
Ũk
0 |G=1,T=0,Ṽ ∈[v1(1),v0(0))

. (36)

To satisfy point (iii), we must have

F
Ũk
0 |G=1,T=0,Ṽ <v1(1)

= FY11|D=0 ◦G0(T k0)−1.

This can be achieved by constructing Ṽ using an appropriate Bernoulli random variable to

split untreated observations in the treatment group in period 0 between some for which Ṽ ∈
[v1(1), v0(0)), and some for which Ṽ < v1(1), exactly as we did for λ0 > 1. Using the de�nition
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of h̃k0(., 1) and the fact h̃k0(Ũk0 , 1) = Y for all observations such that G = 0, T = 1, Ṽ < v1(1),

one can show after a few computations that

F
Ũk
0 |G=1,T=0,Ṽ <v0(0)

= FY10|D=0 ◦ F−1
Y00|D=0.

Plugging the last two equations into (36) �nally yields

F
Ũk
0 |G=1,T=0,Ṽ ∈[v1(1),v0(0))

=
P (D10 = 0)FY10|D=0 ◦ F−1

Y00|D=0 − P (D11 = 0)FY11|D=0 ◦G0(T k0)−1

P (D10 = 0)− P (D11 = 0)

= C0(T k0) ◦G0(T k0)−1.

Therefore, the distributions of Ũk0 |G = 1, T = t, Ṽ < v1(1) and Ũk0 |G = 1, T = t, Ṽ ∈
[v1(1), v0(0)) satisfy (iii). This completes the proof when λ0 < 1.

Corollary 3.4

The bounds on ∆ and τq are a direct consequence of Theorem 3.3. Note that the bounds on

the LATE are well de�ned under Assumption 8. We now prove that these bounds are sharp

under Assumption 7. We only focus on the lower bound, the result being similar for the upper

bound. The model and data impose no condition on the joint distribution of (U0, U1). Hence,

by the proof Theorem 3.3, we can rationalize the fact that (FY11(0)|C , FY11(1)|C) = (B0, B1)

when λ0 > 1. Sharpness of ∆ and τq follows directly. When λ0 < 1, on the other hand, we

can only rationalize the fact that (FY11(0)|C , FY11(1)|C) = (G0k, FY11(1)|C), where G0k converges

pointwise to B0. To show the sharpness of the LATE and QTE, we thus have to prove that

limk→∞
∫
ydG0k(y) =

∫
ydB0(y) and limk→∞G

−1
0k (q) = B−1

0 (q).

As for the LATE, we have, by integration by parts for Lebesgue-Stieljes integrals,∫
ydG0k(y) = y −

∫ y

y
G0kdy = −

∫ 0

y
G0k(y)dy +

∫ y

0
[1−G0k(y)] dy. (37)

We now prove the convergence of each integral in the right-hand side. As shown by Lemma

B.2, G0k can be de�ned as G0k = C0(T k0) with T k0 ≤ T0, T0 denoting the true cdf of Y11(0) for

time compliers, which satis�es C0(T0) = FY11(0)|C . Because C0(.) is increasing when λ0 < 1,

G0k ≤ FY11(0)|C . E(|Y11(0)| |C) < +∞ implies that
∫ 0
y FY11(0)|C(y)dy < +∞. Thus, by the

dominated convergence theorem,

lim
k→∞

∫ 0

y
G0kdy =

∫ 0

y
B0(y)dy < +∞.

Now consider the second integral in (37). If y < +∞, we can also apply the dominated

convergence theorem: 1 − G0k ≤ 1 implies that
∫ y

0 [1−G0k(y)] dy →
∫ y

0 [1−B0(y)] dy. If
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y = +∞, limy→+∞B0(y) = ` < 1 so that∫ y

0
[1−B0(y)] dy = +∞.

By Fatou's lemma,

lim inf

∫ y

0
[1−G0k(y)] dy ≥

∫ y

0
[1−B0(y)] dy = +∞.

Thus, in this case as well the second integral in (37) converges to
∫ y

0 [1−B0(y)] dy. Finally,

because
∫ 0
y G0k(y)dy converges to a �nite limit,

∫
ydG0k(y) converges to

∫
ydB0(y). Hence,

the lower bound of ∆ is sharp.

Now, let us turn to τq. Let y0 be the unique solution to B0(y) = q. Fix ε > 0. By pointwise

convergence, Assumption 7 and unicity of the solution of B0(y) = q,

lim
k→∞

G0k(y0 + ε) = B0(y0 + ε) > B0(y0) = q.

Thus, there exists k0 such that for all k ≥ k0, G0k(y0 + ε) > q. As a result, by de�nition

of G−1
0k , y0 + ε > G−1

0k (q) for all k ≥ k0. Similarly, there exists k1 such that for all k ≥ k1,

y0 − ε < G−1
0k (q). Hence, for all k ≥ max(k0, k1), |G−1

0k (q)−B−1
0 (q)| < ε. The result follows.

Lemma 4.1

First, use Bayes' rule to write:

fX11|C(x) =
P (C|X11 = x)fX11(x)

P (C)
.

Then, notice that

P (C|X11 = x) = P (V ∈ [v1(1, x), v0(0, x))|X11 = x)

= P (V ≥ v1(1, x)|X11 = x)− P (V ≥ v0(0, x)|X11 = x)

= P (V ≥ v1(1, x)|X = x,G = 1, T = 1)− P (V ≥ v0(0, x)|X = x,G = 1, T = 1)

= P (V ≥ v1(1, x)|X = x,G = 1, T = 1)− P (V ≥ v0(0, x)|X = x,G = 1, T = 0)

= P (D = 1|X = x,G = 1, T = 1)− P (D = 1|X = x,G = 1, T = 0)

= P (D11 = 1|X = x)− P (D10 = 1|X = x).

The third step follows from Assumption 11. Therefore,

P (C) = E [P (D11 = 1|X)− P (D10 = 1|X)|G = 1, T = 1] .

The result follows combining the three previous equalities.
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Theorem 4.2

We only prove the result for d = 0, the reasoning being similar for d = 1.

Because we always have D(0) = D in the control group, Assumption 12 implies that for every

x ∈ S(X) and for t ∈ {0, 1}, FY0t(0)|D(0)=0,X=x is strictly increasing, and S(Y0t(0)|D(0) =

0, X = x) = S(Y0t|D = 0, X = x) = S(Y ). Then, let h−1
0 (., t, x) denote the inverse of

h0(., t, x). For every (x, y) ∈ S(X)× S(Y ),

FY0t(0)|D(0)=0,X=x(y) = P (h0(U0, t, x) ≤ y|G = 0, T = t,D(0) = 0, X = x)

= P (U0 ≤ h−1
0 (y, t, x)|G = 0, T = t,D(0) = 0, X = x)

= P (U0 ≤ h−1
0 (y, t, x)|G = 0, D(0) = 0, X = x)

= FU0|G=0,D(0)=0,X=x(h−1
0 (y, t, x)),

where the �rst equality stems from Assumption 9 and the third from Assumption 14. There-

fore, we also have that for all q ∈ (0, 1),

F−1
Y0t(0)|D(0)=0,X=x(q) = h0

(
F−1
U0|G=0,D(0)=0,X=x(q), t, x

)
.

This implies that for every (x, y) ∈ S(X)× S(Y ),

F−1
Y00(0)|D(0)=0,X=x ◦ FY01(0)|D(0)=0,X=x(y) = h0(h−1

0 (y, 1, x), 0, x). (38)

Then, notice that

S(Y11(0)|V < v0(0, x), X = x) = S(h0(U0, 1, x)|G = 1, T = 1, V < v0(0, x), X = x)

= S(h0(U0, 1, x)|G = 1, T = 0, V < v0(0, x), X = x)

= S(h0(U0, 1, x)|G = 0, T = 0, V < v0(0, x), X = x)

= S(h0(U0, 1, x)|G = 0, T = 0, D(0) = 0, X = x)

= S(h0(U0, 1, x)|G = 0, T = 1, D(0) = 0, X = x)

= S(Y01|D = 0, X)

= S(Y ).

The second equality follows from Assumption 11. The third follows from Assumption 12:

S(Y10|D = 0, X = x) = S(Y00|D = 0, X = x) implies that

S(U0|G = 1, T = 0, V < v0(0, x), X = x) = S(U0|G = 0, T = 0, V < v0(0, x), X = x).

The �fth follows from Assumption 14.
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As we also have

S(Y10(0)|V < v0(0, x), X = x) = S(Y10|D = 0, X = x) = S(Y ),

one can use Assumption 11 to prove a conditional version of Equation (8): for every (x, y) ∈
S(X)× S(Y ),

F−1
Y10(0)|V <v0(0,x),X=x ◦ FY11(0)|V <v0(0,x),X=x(y) = h0(h−1

0 (y, 1, x), 0, x). (39)

Combining Equations (38) and (39) implies that for every (x, y) ∈ S(X)× S(Y ),

FY11(0)|V <v0(0,x),X=x(y) = FY10|D=0,X=x ◦ F−1
Y00|D=0,X=x ◦ FY01|D=0,X=x(y). (40)

Finally, under our conditional IV-CIC model we can prove a conditional version of Equation

(6):

FY11(0)|C,X=x(y) =
P (D10 = 0|X = x)FY11(0)|V <v0(0,x),X=x(y)− P (D11 = 0|X = x)FY11|D=0,X=x(y)

P (D10 = 0|X = x)− P (D11 = 0|X = x)
.

Plugging (40) into the last equation yields the result.

Theorem 4.3

We prove the two points by contradiction. In each case we focus on d = 0, the proof being

similar for d = 1.

Point 1. Let us assume that T0 6= ∅. Then there exists a function T0 increasing and included

in [0, 1] such that G0(T0) and C0(T0) are also increasing and included in [0, 1]. As shown in

(12), when λ0 ≤ 1, 0 ≤ T0, G0(T0), C0(T0) ≤ 1 implies that we must have

T0 ≤ T0 ≤ T0.

Conversely, as shown in (15), when λ0 > 1, 0 ≤ T0, G0(T0), C0(T0) ≤ 1 implies

T0 ≤ T0 ≤ T0.

Therefore, 0 ≤ T0, G0(T0), C0(T0) ≤ 1 always implies

min(T0, T0) ≤ T0 ≤ max(T0, T0). (41)

Moreover, T0 increasing implies

T0(y0) ≤ T0(y1). (42)

Combining Equations (41) and (42) implies that we must have

min(T0(y0), T0(y0)) ≤ T0(y0) ≤ T0(y1) ≤ max(T0(y1), T0(y1)). (43)
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This contradicts the fact that I0(y0, y1) = ∅. Hence, T0 = ∅, implying that we reject Assump-

tions 1-3 together.

Point 2. Now assume that there exists y0 < y1 in S(Y )2 such that I0(y0, y1) 6= ∅ and for

every t0 ≤ t1 in I0(y0, y1)2,

P (D10 = 0)H0 ◦ (λ0FY01|D=0(y1) + (1− λ0)t1)− P (D11 = 0)FY11|D=0(y1)

P (D10 = 0)− P (D11 = 0)

<
P (D10 = 0)H0 ◦ (λ0FY01|D=0(y0) + (1− λ0)t0)− P (D11 = 0)FY11|D=0(y0)

P (D10 = 0)− P (D11 = 0)
. (44)

Assume also that T0 6= ∅. C0(T0) increasing implies

P (D10 = 0)H0 ◦ (λ0FY01|D=0(y1) + (1− λ0)T0(y1))− P (D11 = 0)FY11|D=0(y1)

P (D10 = 0)− P (D11 = 0)

≥
P (D10 = 0)H0 ◦ (λ0FY01|D=0(y0) + (1− λ0)T0(y0))− P (D11 = 0)FY11|D=0(y0)

P (D10 = 0)− P (D11 = 0)
. (45)

As shown above in Equation (43), the fact that we must have 0 ≤ T0, G0(T0), C0(T0) ≤ 1 and

T0 increasing implies that we must have T0(y0) ≤ T0(y1) and (T0(y0), T0(y1)) ∈ I0(y0, y1)2,

which is not empty by assumption. Combining this with Equation (45) proves that there

exists t0 = T0(y0) ≤ t1 = T0(y1) in I0(y0, y1)2 such that

P (D10 = 0)H0 ◦ (λ0FY01|D=0(y1) + (1− λ0)t1)− P (D11 = 0)FY11|D=0(y1)

P (D10 = 0)− P (D11 = 0)

≥
P (D10 = 0)H0 ◦ (λ0FY01|D=0(y0) + (1− λ0)t0)− P (D11 = 0)FY11|D=0(y0)

P (D10 = 0)− P (D11 = 0)
.

This contradicts (44). Hence T0 = ∅, and once more we reject Assumptions 1-3 together.

Theorem 5.1

Hereafter, we let C0 and C1 denote respectively the set of continuous functions and the set of

continuously di�erentiable functions with strictly positive derivative on S(Y ).

We �rst show that (F̂Y11(0)|C , F̂Y11(1)|C) tends to a continuous gaussian process. Let θ̃ =

(F000, F001, ..., F111, µ0, µ1). By Lemma B.3,
̂̃
θ = (F̂000, F̂001, ..., F̂111, µ̂0, µ̂1) converges to a

continuous gaussian process. Let

πd : (F000, F001, ..., F111, µ0, µ1) 7→ (Fd10, Fd00, Fd01, Fd11, 1, µd) , d ∈ {0, 1},

so that (F̂Y11(0)|C , F̂Y11(1)|C) =
(
R1 ◦ π0(θ̃), R1 ◦ π1(θ̃)

)
, where R1 is de�ned as in Lemma

B.4. πd is Hadamard di�erentiable as a linear continuous map. Because Fd10, Fd00, Fd01, Fd11

are continuously di�erentiable with strictly positive derivative by Assumption 16, µd > 0, and

µd 6= 1 under Assumption 4, R1 is also Hadamard di�erentiable at (Fd10, Fd00, Fd01, Fd11, 1, µd)

tangentially to (C0)4×R. By the functional delta method (see, e.g., van der Vaart & Wellner,

1996, Lemma 3.9.4), (F̂Y11(0)|C , F̂Y11(1)|C) tends to a continuous gaussian process.
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Now, by integration by parts for Lebesgue-Stieljes integrals,

∆ =

∫ y

y
FY11(0)|C(y)− FY11(1)|C(y)dy.

Moreover, the map ϕ1 : (F1, F2) 7→
∫
S(Y )(F2(y)−F1(y))dy, de�ned on the domain of bounded

càdlàg functions, is linear. Because S(Y ) is bounded by Assumption 16, ϕ1 is also con-

tinuous with respect to the supremum norm. It is thus Hadamard di�erentiable. Because

∆̂ = ϕ1

(
F̂Y11(1)|C , F̂Y11(0)|C

)
, ∆̂ is asymptotically normal by the functional delta method.

The asymptotic normality of τ̂q follows along similar lines. By Assumption 16, FY11(d)|C

is di�erentiable with strictly positive derivative on its support. Thus, the map (F1, F2) 7→
F−1

2 (q)− F−1
1 (q) is Hadamard di�erentiable at (FY11(0)|C , FY11(1)|C) tangentially to the set of

functions that are continuous at (F−1
Y11(0)|C(q), F−1

Y11(1)|C(q)) (see Lemma 21.3 in van der Vaart,

2000). By the functional delta method, τ̂q is asymptotically normal.

The validity of the bootstrap follows along the same lines. By Lemma B.3, the bootstrap is

consistent for θ̂. Because both the LATE and QTE are Hadamard di�erentiable functions of

θ̂, as shown above, the result simply follows by the functional delta method for the bootstrap

(see, e.g., van der Vaart, 2000, Theorem 23.9).

Theorem 5.2

Let θ = (F000, ..., F011, F100, ..., F111, λ0, µ0, λ1, µ1). By Lemma B.5, for d ∈ {0, 1} and q ∈ Q,
θ 7→

∫ y
y Bd(y)dy, θ 7→

∫ y
y Bd(y)dy, θ 7→ B

−1
d (q), and θ 7→ B−1

d (q) are Hadamard di�erentiable

tangentially to (C0)4 × R2. Because ∆ =
∫
S(Y )B0(y) − B1(y)dy, ∆ is also a Hadamard

di�erentiable function of θ tangentially to (C0)4 ×R2. The same reasoning applies for ∆, and

for τq and τq for every q ∈ Q. The theorem then follows from Lemma B.3, the functional delta

method, and the functional delta method for the bootstrap.
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B Technical lemmas

Lemma B.1 Assume Assumptions 4 and 7 hold, and λd > 1. Then:

1. Gd(T d) is a bijection from S(Y ) to [0, 1];

2. Cd(T d) (S(Y )) = [0, 1].

Proof: we only prove the result for d = 0, the reasoning being similar otherwise. One can

show that when λ0 > 1,

G0(T 0) = min
(
λ0FY01|D=0,max

(
λ0FY01|D=0 + (1− λ0), H−10 ◦

(
µ0FY11|D=0

)))
. (46)

By Assumption 4, µ0FY11|D=0 is strictly increasing. Moreover, S(Y10|D = 0) = S(Y00|D =

0) implies that H−1
0 is strictly increasing on [0, 1]. Consequently, H−1

0 ◦
(
µ0FY11|D=0

)
is

strictly increasing on S(Y ) since µ0 < 1. Therefore, G0(T 0) is strictly increasing on S(Y )

as a composition of the max and min of strictly increasing functions, which in turn implies

that G0(T 0) ◦ F−1
Y01|D=0 is strictly increasing on [0, 1]. Moreover, it is easy to see that since

S(Y1t|D = 0) = S(Y0t|D = 0),

lim
y→y

H−1
0 ◦

(
µ0FY11|D=0

)
◦ F−1

Y01|D=0(y) = 0,

lim
y→y

H−1
0 ◦

(
µ0FY11|D=0

)
◦ F−1

Y01|D=0(y) ≤ 1.

Hence, by Equation (46),

lim
y→y

G0(T 0)(y) = 0, lim
y→y

G0(T 0)(y) = 1. (47)

Finally, G0(T 0)◦F−1
Y01|D=0 is also continuous by Assumption 4, as a composition of continuous

functions. Point 1 then follows, by the intermediate value theorem.

Now, we have

C0(T 0) =
P (D10 = 0)FY10|D=0 ◦ F−1

Y01|D=0 ◦G0(T 0)− P (D11 = 0)FY11|D=0

P (D10 = 0)− P (D11 = 0)
.

(47) implies that G0(T 0) is a cdf. Hence, by Assumption 4,

lim
y→y

C0(T 0)(y) = 0, lim
y→y

C0(T 0)(y) = 1.

Moreover, C0(T 0) is increasing by Assumption 7. Combining this with Assumption 4 yields

Point 2, since C0(T 0) is continuous by Assumption 4 once more.
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Lemma B.2 Assume Assumptions 4 and 7 hold, P (Dg0 = 0) > 0 for g ∈ {0; 1} and λ0 < 1.

Then there exists a sequence of cdf T k0 such that

1. T k0(y)→ T 0(y) for all y ∈
◦
S(Y );

2. G0(T k0) is an increasing bijection from S(Y ) to [0, 1];

3. C0(T k0) is increasing and onto [0, 1].

The same holds for the upper bound.

Proof: we consider a sequence (yk)k∈N converging to y and such that yk < y. Since yk < y,

we can also de�ne a strictly positive sequence (ηk)k∈N such that yk + ηk < y. By Assumption

7, H0 is continuously di�erentiable. Moreover,

H ′0 =
F ′Y10|D=0 ◦ F

′
Y00|D=0

F ′Y00|D=0 ◦ F
′
Y00|D=0

is strictly positive on S(Y ) under Assumption 7. F ′Y11|D=0 is also strictly positive on S(Y )

under Assumption 7. Therefore, using a Taylor expansion of H0 and FY11|D=0, it is easy to

show that there exists constants A1k > 0 and A2k > 0 such that for all y < y′ ∈ [yk, yk + ηk]
2,

H0(y′)−H0(y) ≥ A1k(y
′ − y), (48)

FY11|D=0(y′)− FY11|D=0(y) ≤ A2k(y
′ − y). (49)

We also de�ne a sequence (εk)k∈N by

εk = min

(
ηk,

A1k(1− λ0) (T0(yk)− T 0(yk))

µ0A2k

)
. (50)

Note that as shown in (12), since λ0 < 1, 0 ≤ T0, G0(T0), C0(T0) ≤ 1 implies that we must

have

T0 ≤ T0,

which implies in turn that εk ≥ 0. Consequently, since 0 ≤ εk ≤ ηk, inequalities (48) and (49)

also hold for y < y′ ∈ [yk, yk + εk]
2.

We now de�ne T k0. For every k such that εk > 0, let

T k0(y) =

∣∣∣∣∣∣∣∣
T 0(y) if y < yk

T 0(yk) +
T0(yk+εk)−T 0(yk)

εk
(y − yk) if y ∈ [yk, yk + εk]

T0(y) if y > yk + εk.

For every k such that εk = 0, let

T k0(y) =

∣∣∣∣∣ T 0(y) if y < yk

T0(y) if y ≥ yk
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Then, we verify that T k0 de�nes a sequence of cdf which satisfy Points 1, 2 and 3. Under

Assumption 7, T 0(y) is increasing, which implies that T k0(y) is increasing on (y, yk). Since

T0(y) is a cdf, T k0(y) is also increasing on (yk + εk, y). Finally, it is easy to check that when

εk > 0, T k0(y) is increasing on [yk, yk + εk]. T
k
0 is continuous on (y, yk) and (yk + εk, y) under

Assumption 4. It is also continuous at yk and yk + εk by construction. This proves that T k0(y)

is increasing on S(Y ). Moreover,

lim
y→y

T k0(y) = lim
y→y

T 0(y) = 0,

lim
y→y

T k0(y) = lim
y→y

T0(y) = 1.

Hence, T k0 is a cdf. Point 1 also holds by construction of T k0(y).

G0(T k0) = λ0FY01|D=0 +(1−λ0)T k0 is strictly increasing and continuous as a sum of the strictly

increasing and continuous function λ0FY01|D=0 and an increasing and continuous function.

Moreover, G0(T k0) tends to 0 (resp. 1) when y tends to y (resp. to y). Point 2 follows by the

intermediate value theorem.

Finally, let us show Point 3. Because G0(T k0) is a continuous cdf, C0(T k0) is also continuous and

converges to 0 (resp. 1) when y tends to y (resp. to y). Thus, the proof will be completed if we

show that C0(T k0) is increasing. By Assumption 7, C0(T k0) is increasing on (y, yk). Moreover,

since FY11(0)|C = C0(T0), C0(T k0) is also increasing on (yk + εk, y). Finally, when εk > 0, we

have that for all y < y′ ∈ [yk, yk + εk]
2,

H0(λ0FY01|D=0(y′) + (1− λ0)T k
0(y′))−H0(λ0FY01|D=0(y) + (1− λ0)T k

0(y))

≥ A1k(1− λ0)
(
T k

0(y′)− T k
0(y)

)
≥ A1k(1− λ0) (T0(yk)− T 0(yk))

εk
(y′ − y)

≥ µ0A2k(y′ − y)

≥ µ0

(
FY11|D=0(y′)− FY11|D=0(y)

)
,

where the �rst inequality follows by (48) and FY01|D=0(y′) ≥ FY01|D=0(y), the second by the

de�nition of T k0 and T0(yk + εk) ≥ T0(yk), the third by (50) and the fourth by (49). This

implies that C0(T k0) is increasing on [yk, yk + εk], since

C0(T k0) =
H0(λ0FY01|D=0 + (1− λ0)T k0)− µ0FY11|D=0

1− µ0
.

It is easy to check that under Assumption 4 C0(T k0) is continuous on S(Y ). This completes

the proof.

Lemma B.3 Suppose that P (Dg0 = d) > 0 for (d, g) ∈ {0, 1}2 and let

θ = (F000, F001, ..., F111, λ0, µ0, λ1, µ1)
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and

θ̂ = (F̂000, F̂001, ..., F̂111, λ̂0, µ̂0, λ̂1, µ̂1).

Then
√
n
(
θ̂ − θ

)
=⇒ G,

where G denotes a continuous gaussian process. Moreover, the bootstrap is consistent for θ̂.

Proof: let Gn denote the standard empirical process and pdgt = P (Dgt = d). We prove the

result for η = (F000, F001, ..., F111, p000, ..., p011). The result follows since (λ0, µ0, λ1, µ1) is a

smooth function of (p000, ..., p011). For any (y, d, g, t) ∈ (S(Y ) ∪ {+∞})× {0, 1}3, let

fy,d,g,t(Y,D,G, T ) =
1{D = d}1{G = g}1{T = t}1{Y ≤ y}

pdgt
.

We have, for all (y, d, g, t) ∈ (S(Y ) ∪ {−∞,+∞})× {0, 1}3,

√
n
(
F̂dgt(y)− Fdgt(y)

)
=

√
n

ndgt

n∑
i=1

1{Di = d}1{Gi = g}1{Ti = t}1{Yi ≤ y} − Fdgt(y)

=

√
n

ndgt

n∑
i=1

1{Di = d}1{Gi = g}1{Ti = t} [1{Yi ≤ y} − Fdgt(y)] .

=
npdgt
ndgt

Gnfy,d,g,t.

Now, F =
{
fy,d,g,t : (y, d, g, t) ∈ (S(Y ) ∪ {+∞})× {0, 1}3

}
is Donsker (see, e.g., van der

Vaart, 2000, Example 19.6). Besides, npdgt/ndgt
P−→ 1. Thus, by Slutski's lemma (see,

e.g., van der Vaart, 2000, Theorem 18.10 (v)), η̂, the empirical counterpart of η, converges to

a gaussian process.

Now let us turn to the bootstrap. Observe that

√
n
(
F̂ ∗dgt(y)− Fdgt(y)

)
=
npdgt
n∗dgt

G∗nfy,d,g,t,

where G∗n denote the bootstrap empirical process. Because npdgt/n
∗
dgt

P−→ 1 and by consis-

tency of the bootstrap empirical process (see, e.g., van der Vaart, 2000, Theorem 23.7), the

bootstrap is consistent for η̂.

Notation for the next lemmas

In the following lemmas, we let, for any functional R, dR denote the Hadamard di�erential of

R whenever it exists, that is to say the continuous linear form satisfying

dR(h) = lim
t→0

R(F + tht)−R(F )

t
, for any ht s.t. ||ht − h||∞ → 0.

Note that the point at which the di�erential is taken is left implicit.
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Lemma B.4 1. Let R1(F1, F2, F3, F4, λ, µ) =
µF4−F1◦F−1

2 ◦q1(F3,λ)
µ−1 and R2(F1, F2, F3, F4, λ, µ) =

µF4−F1◦F−1
2 ◦q2(F3,λ)
µ−1 , with q1(F3, λ) = λF3 and q2(F3, λ) = λF3 + 1 − λ. R1 and R2 are

Hadamard di�erentiable at any (F10, F20, F30, F40, λ0, µ0) ∈ (C1)4×[0,∞)×([0,∞)\{1}),
tangentially to (C0)4 × R2. Moreover, dR1

(
(C0)4 × R2

)
and dR2

(
(C0)4 × R2

)
are in-

cluded in C0.

2. Let R3(F1) =
∫ y
y m1(F1)(y)dy and R4(F1, F2) =

∫ y
y F2(m1(F1))(y)dy. R3 is Hadamard

di�erentiable at any F10 such that F10 is increasing on S(Y ) and the equation F10(y) = 1

admits at most one solution on
◦
S(Y ), tangentially to C0. R4 is Hadamard di�erentiable

at any (F10, F20) such that F10 satis�es the same conditions as for R3 and F20 is con-

tinuously di�erentiable on [0, 1], tangentially to (C0)2. The same holds if we replace m1

(and the equation F10(y) = 1) by M0 (and F10(y) = 0).

Proof of 1. We �rst prove that φ1(F1, F2, F3) = F1 ◦ F−1
2 ◦ F3 is Hadamard di�erentiable at

(F10, F20, F30) ∈
(
C1
)3
. Let D denote the set of bounded càdlàg functions on [y, y]. Because

(F10, F20) ∈
(
C1
)2
, the function φ2 : (F1, F2, F3) 7→ (F1 ◦ F−1

2 , F3) is Hadamard di�erentiable

at (F10, F20, F30) tangentially to D×C0×D (see, e.g., van der Vaart & Wellner, 1996, Problem

3.9.4), and therefore tangentially to
(
C0
)3
. Moreover computations show that its derivative

at (F10, F20, F30) satis�es

dφ2(h1, h2, h3) = (h1 ◦ F−1
20 −

F ′10 ◦ F
−1
20

F ′20 ◦ F
−1
20

h2 ◦ F−1
20 , h3).

This shows that dφ2

((
C0
)3) ⊆ (C0

)2
.

Then, the composition function φ3 : (U, V ) 7→ U ◦ V is Hadamard di�erentiable at any

(U0, V0) ∈
(
C1
)2
, tangentially to C0 × D (see, e.g., van der Vaart & Wellner, 1996, Lemma

3.9.27), and therefore tangentially to
(
C0
)2
. It is thus Hadamard di�erentiable at (F10 ◦

F−1
20 , F30), and one can show that dφ3

((
C0
)2) ⊆ C0. Thus, by the chain rule (see van der Vaart

& Wellner, 1996, Lemma 3.9.3), φ1 = φ3 ◦φ2 is also Hadamard di�erentiable at (F10, F20, F30)

tangentially to (C0)3, and dφ1

((
C0
)3) ⊆ C0.

Finally, because q1(F3, λ) is a smooth function of F3 and λ, and R1 is a smooth function

of (φ1(F1, F2, q1(F3, λ)), F4, µ), it is also Hadamard di�erentiable at (F10, F20, F30, F40, λ0, µ0)

tangentially to (C0)4 × R2, and dR1

(
(C0)4 × R2

)
⊆ C0.

Proof of 2. We only prove the result for R4 and m1, the reasoning being similar (and more

simple) for R3 and M0. For any collections of functions (ht1) and (ht2) in C0, respectively
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converging uniformly towards h1 and h2 in C0, we have

R4(F10 + tht1, F20 + tht2)−R4(F10, F20)

t
=

∫ y

y
ht2 ◦m1(F10 + tht1)(y)dy

+

∫ y

y

F20 ◦m1(F10 + tht1)− F20 ◦m1(F10)

t
(y)dy.

Consider the �rst integral I1.

|ht2 ◦m1(F10 + tht1)(y)− h2 ◦m1(F10)(y)|

≤ |ht2 ◦m1(F10 + tht1)(y)− h2 ◦m1(F10 + tht1)(y)|

+ |h2 ◦m1(F10 + tht1)(y)− h2 ◦m1(F10)(y)|

≤ ||ht2 − h2||∞ + |h2 ◦m1(F10 + tht1)(y)− h2 ◦m1(F10)(y)|.

By uniform convergence of ht2 towards h2, the �rst term in the last inequality converges to

0 when t goes to 0. By convergence of m1(F10 + tht1) towards m1(F10) and continuity of h2,

the second term also converges to 0. As a result,

ht2 ◦m1(F10 + tht1)(y)→ h2 ◦m1(F10)(y).

Moreover, for t small enough,

|ht2 ◦m1(F10 + tht1)(y)| ≤ ||h2||∞ + 1.

Thus, by the dominated convergence theorem, I1 →
∫ y
y h2 ◦m1(F10)(y)dy, which is linear in

h2 and continuous since the integral is taken over a bounded interval.

Now consider the second integral I2. Let us de�ne y1
as the solution to F10(y) = 1 on (y, y)

if there is one such solution, y
1

= y otherwise. We prove that almost everywhere,

F20 ◦m1(F10(y) + tht1(y))− F20 ◦m1(F10(y))

t
→ F ′20(F10(y))h1(y)1{y < y

1
}. (51)

As F10 is increasing, for y < y
1
, F10(y) < 1, so that for t small enough, F10(y) + tht1(y) < 1.

Therefore, for t small enough,

F20 ◦m1(F10(y) + tht1(y))− F20 ◦m1(F10(y))

t
=

F20 ◦ (F10(y) + tht1(y))− F20 ◦ F10(y)

t

=
(F ′20(F10(y)) + ε(t))(F10(y) + tht1(y)− F10(y))

t
= (F ′20(F10(y)) + ε(t))ht1(y)

for some function ε(t) converging towards 0 when t goes to 0. Therefore,

F20 ◦m1(F10(y) + tht1(y))− F20 ◦m1(F10(y))

t
→ F ′20(F10(y))h1(y),
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so that (51) holds for y < y
1
. Now, if y > y > y

1
, F10(y) > 1 because F10 is increasing. Thus,

for t small enough, F10(y) + tht1(y) > 1. Therefore, for t small enough,

F20 ◦m1(F10(y) + tht1(y))− F20 ◦m1(F10(y))

t
= 0,

so that (51) holds as well. Thus, (51) holds almost everywhere.

Now, remark that m1 is 1-Lipschitz. As a result,∣∣∣∣F20 ◦m1(F10(y) + tht1(y))− F20 ◦m1(F10(y))

t

∣∣∣∣ ≤ ||F ′20||∞|ht1(y)|

≤ ||F ′20||∞ (|h1(y)|+ ||ht1 − h1||∞) .

Because ||ht1 − h1||∞ → 0, |h1(y)|+ ||ht1 − h1||∞ ≤ |h1(y)|+ 1 for t small enough. Thus, by

the dominated convergence theorem,∫ y

y

F20 ◦m1(F10 + tht1)− F20 ◦m1(F10)

t
(y)dy →

∫ y
1

y
F ′20(F10(y))h1(y)dy.

The right-hand side is linear with respect to h1. It is also continuous since the integral is

taken over a bounded interval. The second point follows.

Lemma B.5 Assume Assumptions 1-5, 7, 15-17 hold. Let

θ = (F000, ..., F011, F100, ..., F111, λ0, µ0, λ1, µ1). For d ∈ {0, 1} and q ∈ Q, θ 7→
∫ y
y Bd(y)dy,

θ 7→
∫ y
y Bd(y)dy, θ 7→ B

−1
d (q) and θ 7→ B−1

d (q) are Hadamard di�erentiable tangentially to

(C0)4 × R2.

Proof: the proof is complicated by the fact that even if the primitive cdf are smooth, the

bounds Bd and Bd may admit kinks, so that Hadamard di�erentiability is not trivial to

derive. The proof is also lengthy as Bd and Bd take di�erent forms depending on d ∈ {0, 1}
and whether λ0 < 1 or λ0 > 1. Before considering all possible cases, note that by Assumption

7, Bd = Cd(T d).

1. Lower bound Bd

For d ∈ {0, 1}, let Ud =
λdFd01−H−1

d (m1(µdFd11))

λd−1 , so that

T d = M0 (m1 (Ud)) ,

Cd(T d) =
µdFd11 −Hd (λdFd01 + (1− λd)T d)

µd − 1
.

Also, let

yu0d = inf{y : Ud(y) > 0} and yu1d = inf{y : Ud(y) > 1}.

When yu0d and yu1d are in R, we have, by continuity of Ud, Ud(y
u
0d) = 0 and Ud(y

u
1d) = 1.

Consequently, T d(y
u
0d) = Ud(y

u
0d) and T d(y

u
1d) = Ud(y

u
1d).
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Case 1: λ0 < 1 and d = 0.

In this case, U0 =
H−1

0 (µ0F011)−λ0F001

1−λ0 . We �rst prove by contradiction that yu00 = +∞. First,

because limy→+∞ U0(y) < 1, we have

lim
y→+∞

T 0(y) = M0( lim
y→+∞

U0(y)) < 1.

Thus, by Assumption 7, U0(y) < 1 for all y, otherwise T 0(y) would be decreasing. Hence,

yu10 = +∞.

Therefore, when yu00 < +∞, there exists y such that 0 < U0(y) < 1. Assume that there exists

y′ ≥ y such that U0(y′) < 0. By continuity and the intermediate value theorem, this would

imply that there exists y′′ ∈ (y, y′) such that U0(y′′) = 0. But since both U0(y) and U0(y′′)

are included in [0, 1], this would imply that T 0 is strictly decreasing between y and y′′, which

is not possible under Assumption 7. This proves that when yu00 < +∞, there exists y such

that for every y′ ≥ y, 0 ≤ U0(y′) < 1.

Consequently, T 0 = U0 for every y′ ≥ y. This in turn implies that C0(T 0) = 0 for every

y′ ≥ y. Moreover, C0(T 0) is increasing under Assumption 7, which implies that C0(T 0) = 0

for every y. This proves that when yu00 < +∞, C0(T 0) = 0. This implies that S0 is empty,

which violates Assumption 7. Therefore, under Assumption 7, we cannot have yu00 < +∞
when λ0 < 1. Because yu00 = +∞, T 0 = 0. Therefore,

C0(T 0)(y) =
µ0F011(y)−H0 (λ0F001(y))

µ0 − 1
.

The map F 7→
∫
S(Y ) F (y)dy is linear and continuous with respect to the supremum norm at

any continuous F because S(Y ) is bounded. It is thus Hadamard di�erentiable, tangentially

to C0. Therefore, by Assumption 17, the �rst point of Lemma B.4, and the chain rule,

θ 7→
∫
S(Y )

B0(y)dy

is Hadamard di�erentiable tangentially to (C0)4 × R2.

Then, the map F 7→ F−1 is Hadamard di�erentiable at any F with strictly positive derivative,

tangentially to C0 (see, e.g., van der Vaart, 2000, Lemma 21.4). Moreover, by Assumption 17,

C0(T 0) is increasing and di�erentiable with strictly positive derivative on S0, which is equal

to S(Y ) in this case. Thus, by the �rst point of Lemma B.4 and the chain rule, θ 7→ B−1
0 (q)

is Hadamard di�erentiable tangentially to (C0)4 × R2 for any q ∈ Q.

Case 2: λ0 > 1 and d = 0.
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In this case,

U0 =
λ0F001 −H−1

0 (µ0F011)

λ0 − 1
.

Therefore, limy→y U0(y) = 0, and limy→y U0(y) > 1. As a result, −∞ < yu10 < +∞, and

T 0(yu10) = U0(yu10) = 1. This in turn implies C0(T 0)(yu10) = 0. Combining this with Assump-

tion 7 implies that C0(T 0)(y) = 0 for every y ≤ yu10. Moreover, Assumption 7 also implies

that T d(y) = 1 for every y ≥ yu10. Therefore,

C0(T 0)(y) =

∣∣∣∣∣ 0 if y ≤ yu10,
µ0F011(y)−H0(λ0F001(y)+(1−λ0))

µ0−1 if y > yu10.

Thus, C0(T 0)(y) = M0(R2(F011, F010, F000, F001, λ0, µ0)), where R2 is de�ned as in Lemma

B.4. Hadamard di�erentiability of
∫ y
y C0(T 0)(y)dy tangentially to (C0)4 × R2 thus follows

by Points 1 and 2 of Lemma B.4, the chain rule and the fact that by Assumption 16,

(F011, F010, F000, F001, λ0, µ0) ∈ (C1)4 × [0,∞) × ([0,∞)\{1}). As for the QTE, note that

by Point 1 of Lemma B.4, θ 7→ C0(T 0) is Hadamard di�erentiable as a function on (yu10, y),

tangentially to (C0)4 ×R2. By Assumption 17, C0(T 0) is also strictly increasing and di�eren-

tiable with positive derivative on S0 = (yu10, y). Thus, by point 1 of Lemma B.4, Hadamard

di�erentiability of F 7→ F−1(q) at (C0(T 0), q) for q ∈ Q tangentially to C0, and the chain rule,

θ 7→ B−1
0 (q) is Hadamard di�erentiable tangentially to (C0)4 × R2.

Case 3: λ0 < 1 and d = 1.

In this case,

U1 =
λ1F100 −H−1

1 (µ1F111)

λ1 − 1
.

µ1 > 1 implies that 1
µ1
< 1. Therefore, y∗ = F−1

111( 1
µ1

) is in
◦
S(Y ) under Assumption 4.

Case 3.a: λ0 < 1, d = 1 and yu01 < y∗.

We have U1(y∗) = λ1F100(y∗)−1
λ1−1 < 1. Assume that U1(y∗) < 0. Since yu01 < y∗, this implies that

there exists y < y∗ such that 0 < U1(y). Since U1 is continuous, there also exists y′ < y∗ such

that 0 < U1(y′) < 1. By continuity and the intermediate value theorem, this �nally implies

that there exists y′′ such that y′ < y′′ and U1(y′′) = 0. This contradicts Assumption 7 since

this would imply that T 1 is decreasing between y′ and y′′. This proves that

0 ≤ U1(y∗) < 1.

Therefore, T 1(y∗) = U1(y∗), which in turn implies that C1(T 1)(y∗) = 0. By Assumption 7,

this implies that for every y ≤ y∗, C1(T 1)(y) = 0.
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For every y greater than y∗,

U1(y) =
λ1F100(y)− 1

λ1 − 1
.

U1(y) < 1. Since U1(y∗) ≥ 0 and y 7→ λ1F100(y)−1
λ1−1 is increasing, U1(y) ≥ 0. Consequently, for

y ≥ y∗, T 1(y) = U1(y).

Finally, we obtain

C1(T 1)(y) =

∣∣∣∣∣ 0 if y ≤ y∗,
µ1F111(y)−1

µ1−1 if y > y∗.

The result follows as in Case 2 above.

Case 3.b: λ0 < 1, d = 1 and yu01 ≥ y∗.

For all y ≥ y∗, U1(y) = λ1F100(y)−1
λ1−1 . This implies that yu01 = F−1

100(1/λ1) < +∞ and U1(yu01) =

0. Because y 7→ λ1F100(y)−1
λ1−1 is increasing, U1(y) ≥ 0 for every y ≥ yu01. Moreover, U1(y) ≤ 1.

Therefore, T 1(y) = U1(y) for every y ≥ yu01. Beside, for every y lower than y
u
01, T 1(y) = 0. As

a result,

C1(T 1)(y) =

∣∣∣∣∣
µ1F111(y)−H1(λ1F101(y))

µ1−1 if y ≤ yu01,
µ1F111(y)−1

µ1−1 if y > yu01.

This implies that∫ y

y
C1(T 1)(y)dy =

1

µ1 − 1

[
µ1

∫ y

y
F111(y)dy −R4(λ1F101, H1)

]
,

where R4 is de�ned in Lemma B.4. θ 7→
∫ y
y F111(y)dy is Hadamard di�erentiable at F111,

tangentially to C0. As shown in the proof of Lemma B.4, H1 = F110 ◦ F−1
100 is a Hadamard

di�erentiable function of (F110, F100), tangentially to (C0)2. Thus, by Lemma B.4 and the chain

rule, R4(λ1F101, H1) is a Hadamard di�erentiable function of (F101, F110, F100), tangentially

to (C0)3. The result follows for
∫ y
y C1(T 1)(y)dy.

The previous display also shows that C1(T 1) is Hadamard di�erentiable as a function of

(F100, F101, F110, F111, λ1, µ1) when considering the restriction of these functions to (y, yu01)

only. By Assumption 17, C1(T 1) is also a di�erentiable function with positive derivative on

(y, yu01). Therefore, using once again the �rst point of Lemma B.4 and the chain rule, θ 7→
C1(T 1)−1(q) is Hadamard di�erentiable tangentially to (C0)4×R2, for q ∈ (C1(T 1)(y), C1(T 1)(yu01)) =

(0, q1). The same holds when considering the interval (yu01, y) instead of (y, yu01). Hence,

θ 7→ B−1
1 (q) is Hadamard di�erentiable tangentially to (C0)4 × R2, for q ∈ (0, 1)\{q1} = Q.

Case 4: λ0 > 1 and d = 1.
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In this case,

U1 =
H−1

1 (µ1F111)− λ1F100

1− λ1
.

Therefore, limy→y U1(y) = 0, which implies that yu11 > −∞. As above, µ1 > 1 implies that

y∗ is in
◦
S(Y ) under Assumption 4. U1(y∗) = 1−λ1F100(y∗)

1−λ1 > 1, which implies that yu11 < +∞.

Therefore, reasoning as for Case 2, we obtain

C1(T 1)(y) =

∣∣∣∣∣ 0 if y ≤ yu11,
µ1F111(y)−H1(λ1F100(y)+(1−λ1))

µ1−1 if y > yu11.

The result follows as in Case 2 above.

2. Upper bound Bd.

Let Vd =
λdFd01−H−1

d (M0(µdFd11+(1−µd)))

λd−1 , so that

T d = M0 (m1 (Vd)) ,

Cd(T d) =
µdFd11 −Hd

(
λdFd01 + (1− λd)T d

)
µd − 1

.

Also, let

yv0d = inf{y : Vd(y) > 0}, yv1d = inf{y : Vd(y) > 1}.

Note that when yv0d and y
v
1d are in R, by continuity of Vd we have Vd(yv0d) = 0 and Vd(y

v
1d) = 1.

Consequently, T d(y
v
0d) = Vd(y

v
0d) and T d(y

v
1d) = Vd(y

v
1d).

Case 1: λ0 < 1 and d = 0.

In this case,

V0 =
H−1

0 (µ0F011 + (1− µ0))− λ0F001

1− λ0
.

Since µ0 < 1, limy→y V0(y) > 0 and can even be greater than 1.

First, let us prove by contradiction that yv10 = −∞. V0(y) ≤ 1 for every y ≤ yv10. Using the

fact that limy→y V0(y) > 0 and that T 0 must be increasing under Assumption 7, one can also

show that 0 ≤ V0(y) for every y ≤ yv10. This implies that T 0(y) = V0(y) which in turn implies

that C0(T 0)(y) = 1 for every y ≤ yv10. Since C0(T 0) must be increasing under Assumption 7,

this implies that for every y ∈ S(Y ),

C0(T 0)(y) = 1.

This implies that S0 is empty, which violates Assumption 7. Therefore, yv10 = −∞.
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yv10 = −∞ implies that limy→y T 0(y) = 1. This combined with Assumption 7 implies that

T 0(y) = 1 for every y ∈ S(Y ). Therefore,

C0(T 0)(y) =
µ0F011(y)−H0 (λ0F001(y) + (1− λ0))

µ0 − 1
.

The result follows as in Case 1 of the lower bound.

Case 2: λ0 > 1 and d = 0.

In this case,

V0 =
λ0F001 −H−1

0 (µ0F011 + (1− µ0))

λ0 − 1
.

Since µ0 < 1, limy→y V0(y) < 0. Therefore, yv00 > −∞.

Case 2.a): λ0 > 1, d = 0 and yv00 < +∞.

If yv00 ∈ R, T 0(yv00) = V0(yv00) which in turn implies that C0(T 0)(yv00) = 1. By Assumption 7,

this implies that for every y ≥ yv00, C0(T 0)(y) = 1. For every y ≤ yv00, T 0(y) = 0, so that

C0(T 0) =
µ0F011 −H0 (λ0F001)

µ0 − 1
.

As a result,

C0(T 0)(y) =

∣∣∣∣∣
µ0F011(y)−H0(λ0F001(y))

µ0−1 if y ≤ yv00,

1 if y > yv00.

The result follows as in Case 2 of the lower bound.

Case 2.b): λ0 > 1, d = 0 and yv00 = +∞.

If yv00 = +∞, T 0(y) = 0 for every y ∈ S(Y ), so that

C0(T 0)(y) =
µ0F011(y)−H0 (λ0F001(y))

µ0 − 1
.

The result follows as in Case 1 of the lower bound.

Case 3: λ0 < 1 and d = 1.

In this case,

V1 =
λ1F101 −H−1

1 (µ1F111 − (µ1 − 1))

λ1 − 1
.

Therefore, limy→y V1(y) = 0, which implies that yv11 > −∞. µ1 > 1 implies that µ1−1
µ1

< 1.

Therefore, y∗ = F−1
111(µ1−1

µ1
) is in

◦
S(Y ) under Assumption 4.

Case 3.a): λ0 < 1, d = 1 and yv11 > y∗.
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We have V1(y∗) = λ1F101(y∗)/(λ1 − 1) > 0. If y∗ < yv11, V1(y∗) < 1. Therefore, 0 < T 1(y∗) =

V1(y∗) < 1. This implies that C1(T 1)(y∗) = 1 which in turn implies that C1(T 1)(y) = 1 for

every y ≥ y∗ under Assumption 7.

For every y lower than y∗,

V1(y) =
λ1F101(y)

λ1 − 1
.

V1(y) > 0. Since by assumption yv11 > y∗, V1(y) < 1. Consequently, for y ≤ y∗, we have

T 1(y) = V1(y). As a result,

C1(T 1)(y) =

∣∣∣∣∣
µ1F111(y)
µ1−1 if y ≤ y∗,

1 if y > y∗.

The result follows as in Case 2 of the lower bound.

Case 3.b): λ0 < 1, d = 1, and yv11 ≤ y∗.

First, V1(yv11) = 1, implying T 1(yv11) = 1. By Assumption 7, T 1(y) = 1 for all y ≥ yv11. Second,

if y ≤ yv11 ≤ y∗, V1(y) = λ1F101(y)
λ1−1 . Thus V1 is increasing on (−∞, yv11). Moreover V1(yv11) = 1.

Hence, V1(y) ≤ 1 for every y ≤ yv11. Because we also have V1(y) ≥ 0, T 1(y) = V1(y) for every

y ≤ yv11.

As a result,

C1(T 1)(y) =

∣∣∣∣∣
µ1F111(y)
µ1−1 if y ≤ yv11,

µ1F111(y)−H1(λ1F101(y)+1−λ1)
µ1−1 if y > yv11.

The result follows as in Case 3.b) of the lower bound. Note that here, C1(T 1)(y) is kinked

at yv11, with C1(T 1)(yv11) = q2. Hence, we have to exclude this point of the domain on which

θ 7→ B
−1
1 (q) is Hadamard di�erentiable.

Case 4: λ0 > 1 and d = 1.

In this case,

V1 =
H−1

1 (µ1F111 − (µ1 − 1))− λ1F101

1− λ1
.

limy→y V1(y) = 1, which implies that yv01 < +∞. As above, µ1 > 1 implies that µ1−1
µ1

< 1.

Therefore, y∗ = F−1
111(µ1−1

µ1
) is in

◦
S(Y ) under Assumption 4. V1(y∗) = −λ1F101(y∗)

1−λ1 < 0. Since

T 1 is increasing under Assumption 7, one can show that this implies that yv01 > y∗. Therefore,

reasoning as for Case 2, we obtain that

C1(T 1)(y) =

∣∣∣∣∣
µ1F111(y)−H1(λ1F101(y))

µ1−1 if y ≤ yv01,

1 if y > yv01.

The result follows as in Case 2 of the lower bound.
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C E�ectiveness of a smoking cessation treatment

Smoking rate among the adult population in France is around 30%. This is much higher than

in most western countries (see e.g. Beck et al., 2007). Varenicline, a pharmacotherapy for

smoking cessation, has been marketed in France since February 2007. Randomized controlled

trials (RCT) have shown Varenicline to be more e�cient than other pharmacotherapies used

in smoking cessation (see e.g. Jorenby et al., 2006). However, there have been few studies

based on non experimental data to con�rm the e�cacy of this new drug in real life settings.

Moreover, studies on this new drug only investigated its average e�ect, and none considered

potentially heterogeneous e�ects.

In our analysis, we use a database from 17 French smoking cessation clinics, in which doctors,

nurses, and psychologists help smokers quit. When a patient comes for the �rst time, the

clinic sta� asks her how many cigarettes she smokes per day in order to assess how serious

her addiction is. They also measure the number of carbon monoxide (CO) parts per million

in the air she expires using a CO meter. This latter measure is a biomarker for recent tobacco

use. After collecting those measures and discussing with the patient, they may advise her

treatments, such as nicotine replacement therapies, to help her quit. Patients then come

back for follow-up visits. During those visits, CO measures are made to validate tobacco

abstinence. This measure is much more reliable than daily cigarettes smoked, because it is

not self-reported. Below 5 parts per million, a patient is regarded as a non smoker by clinics

sta�. She is regarded as a light smoker when her CO is between 5 and 10, as a smoker when

it is between 10 and 20, and as a heavy smoker when it is above 20.10 Therefore, a patient

with a CO of 25 at follow-up not only failed to quit but is still a heavy smoker.

The rate of prescription of Varenicline is heterogeneous across clinics, as it ranges from 0% to

37%. A very strong predictor of clinics propensity to prescribe varenicline is the share of their

sta� holding the �diplome universitaire de tabacologie� in 2005-2006, i.e. before varenicline

was released. The �diplome universitaire de tabacologie� is a university degree awarded to

sta� who followed a 60 hours course on how to help smokers quit. Doctors, nurses, and

psychologists working in those clinics are not obliged to take this course, but a large fraction

of them do. The share of sta� holding this degree is also heterogeneous across clinics, as it

ranges from 0 to 100%, with a median equal to 60%. The correlation between prescription

rate and share of sta� holding this degree is equal to 0.63. Sta� who took this training a few

years before varenicline got market approval might have then been told that preliminary RCT

showed this new drug to be very promising. They might also have a stronger taste for learning

10Typically, light smokers smoke less than 10 cigarettes a day, smokers smoke between 10 and 20 cigarettes

a day, and heavy smokers smoke more than 20 cigarettes.
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than those who do not take this training, and be therefore more aware of medical innovations,

and more enclined to adopting them.

We use the share of sta� holding this degree in 2005-2006 to construct two groups of �control�

and �treatment� clinics. Control clinics are those belonging to the �rst tercile of this measure,

while treatment clinics are those belonging to the third tercile. Period 0 covers the 2 years

before the release of Varenicline (February 2005 to January 2007), while period 1 extends over

the 2 years following it (February 2007 to January 2009). Our sample is made up of the 7,468

patients who attended control and treatment clinics over these two periods and who came to

at least one follow-up visit.

By construction, the prescription rate of Varenicline is 0% in control and treatment clinics at

period 0. At period 1, it is equal to 4.9% in control clinics and 25.4% in treatment clinics.

This di�erential evolution of treatment rates over time across those two groups of clinics is

the source of variation we use to measure the e�ect of varenicline. Since P (D10 = 0) = 1,

FY11(1)|C(y) is point identi�ed by FY11|D=1. On the other hand, we have by construction

P (D00 = 1) = 0 and P (D01 = 1) > 0 since we observe treated individuals in the control

group at period 1. Thus, we are in the partially identi�ed case and we rely on Theorem 3.3

to estimate bounds for FY11(0)|C .
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Figure 4: Estimated bounds on the cdf of Y (0) and Y (1) for compliers.

The resulting estimates are displayed in Figure 4. F̂Y11|D=1 dominates the estimate of the

upper bound of FY11(0)|C(y) for all CO values above 10. This shows that varenicline reduces
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the share of high or very high CO values. This is re�ected in Figure 5, which shows τ̂ q

and τ̂ q, as well as the lower (resp. upper) bound of the 90% con�dence interval of τ q (resp.

τ q). The two bounds are very close to 0 up to the 60th percentile, and both become strongly

negative from that percentile onwards. We show bounds up to the 82% percentile only, because

q = 0.82.
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Figure 5: Estimated bounds for QTE on CO at follow-up.

In the previous �gure, 0 most often lies in the con�dence interval of τq, except for q ∈
(0.78, 0.82). To increase statistical power, we include quartile of expired CO at baseline as a

control variable. Results are displayed in Figure 6. τq is now signi�cantly di�erent from 0 for

q ∈ (0.62, 0.82).
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Figure 6: Estimated bounds for QTE, including baseline CO as a control.

Finally, we use our results to analyze the e�ect of varenicline on the probability of being a

non smoker, a light smoker, a smoker, or an heavy smoker at follow-up. Results are displayed

in Table 6. Varenicline does not signi�cantly increase the share of non smokers at follow-up,

even though our bounds point towards a small, positive e�ect. However, it has a large and

signi�cant negative e�ect on the share of heavy smokers: even as per our worst case upper

bound, it decreases this share by 13.4 percentage points.

Table 6: Bounds on the e�ect of Varenicline on the shares of non smokers,

light smokers, smokers, and heavy smokers

P (Y11(1) ∈ I|C)− P (Y11(0) ∈ I|C)

I Lower bound Upper bound p-value

[0;5] 0.4% 19.5% 0.48

(5;10] -19.1% 8.2% 0.93

(10;20] 4.5% 15.1% 0.27

(20;+∞) -24.0% -13.4% 0.02

Notes: the p-value corresponds to the test of the null hypoth-

esis that P (Y11(1) ∈ I|C)− P (Y11(0) ∈ I|C) = 0.

The main assumption of our IV-CIC model states that the distribution of Ud, which can be
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interpreted here as addiction, or propensity to quit, is stable over time in the two groups.

This could be violated, for instance if the most addicted patients come to treatment clinics

in period 1 because they know they can get a prescription of Varenicline in those clinics and

not in control ones. To assess the credibility of this assumption, we conduct the exact same

analysis as in Figure 5, but with patients' baseline CO as our outcome. Baseline CO is indeed

a good proxy for severity of addiction. The resulting bounds for those �placebo� QTE are

displayed in Figure 7. τ̂ q and τ̂ q are small in absolute value; 0 is most often included between

them, and it always lies within the con�dence interval of τq. This supports the identifying

assumption of our IV-CIC model.
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Figure 7: Bounds for QTE on baseline CO among compliers
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