45 research outputs found

    A review of applying second-generation wavelets for noise removal from remote sensing data.

    Get PDF
    The processing of remotely sensed data includes compression, noise reduction, classification, feature extraction, change detection and any improvement associated with the problems at hand. In the literature, wavelet methods have been widely used for analysing remote sensing images and signals. The second-generation of wavelets, which is designed based on a method called the lifting scheme, is almost a new version of wavelets, and its application in the remote sensing field is fresh. Although first-generation wavelets have been proven to offer effective techniques for processing remotely sensed data, second-generation wavelets are more efficient in some respects, as will be discussed later. The aim of this review paper is to examine all existing studies in the literature related to applying second-generation wavelets for denoising remote sensing data. However, to make a better understanding of the application of wavelet-based denoising methods for remote sensing data, some studies that apply first-generation wavelets are also presented. In the part of hyperspectral data, there is a focus on noise removal from vegetation spectrum

    Around-the-clock observations of the Q0957+561A,B gravitationally lensed quasar. II. Results for the second observing season

    Get PDF
    We report on an observing campaign in 2001 March to monitor the brightness of the later arriving Q0957+561B image in order to compare with the previously published brightness observations of the (first-arriving) A image. The 12 participating observatories provided 3543 image frames, which we have analyzed for brightness fluctuations. From our classical methods for time-delay determination, we find a 417.09 ± 0.07 day time delay, which should be free of effects due to incomplete sampling. During the campaign period, the quasar brightness was relatively constant and only small fluctuations were found; we compare the structure function for the new data with structure function estimates for the 1995-1996 epoch and show that the structure function during our observing interval is unusually depressed. We also examine the data for any evidence of correlated fluctuations at zero lag. We discuss the limits of our ability to measure the cosmological time delay if the quasar's emitting surface is time resolved, as seems likely

    Evolutionary Dynamics Of An Expressed Mhc Class Iiβ Locus In The Ranidae (Anura) Uncovered By Genome Walking And High-Throughput Amplicon Sequencing

    No full text
    The Major Histocompatibility Complex (MHC) is a genomic region encoding immune loci that are important and frequently used markers in studies of adaptive genetic variation and disease resistance. Given the primary role of infectious diseases in contributing to global amphibian declines, we characterized the hypervariable exon 2 and flanking introns of the MHC Class IIβ chain for 17 species of frogs in the Ranidae, a speciose and cosmopolitan family facing widespread pathogen infections and declines. We find high levels of genetic variation concentrated in the Peptide Binding Region (PBR) of the exon. Ten codons are under positive selection, nine of which are located in the mammal-defined PBR. We hypothesize that the tenth codon (residue 21) is an amphibian-specific PBR site that may be important in disease resistance. Trans-species and trans-generic polymorphisms are evident from exon-based genealogies, and co-phylogenetic analyses between intron, exon and mitochondrial based reconstructions reveal incongruent topologies, likely due to different locus histories. We developed two sets of barcoded adapters that reliably amplify a single and likely functional locus in all screened species using both 454 and Illumina based sequencing methods. These primers provide a resource for multiplexing and directly sequencing hundreds of samples in a single sequencing run, avoiding the labour and chimeric sequences associated with cloning, and enabling MHC population genetic analyses. Although the primers are currently limited to the 17 species we tested, these sequences and protocols provide a useful genetic resource and can serve as a starting point for future disease, adaptation and conservation studies across a range of anuran taxa
    corecore