7,798 research outputs found
New Convolution Identities for Hypergeometric Bernoulli Polynomials
New convolution identities of hypergeometric Bernoulli polynomials are
presented. Two different approaches to proving these identities are discussed,
corresponding to the two equivalent definitions of hypergeometric Bernoulli
polynomials as Appell sequences.Comment: 14 page
Self-vacancies in Gallium Arsenide: an ab initio calculation
We report here a reexamination of the static properties of vacancies in GaAs
by means of first-principles density-functional calculations using localized
basis sets. Our calculated formation energies yields results that are in good
agreement with recent experimental and {\it ab-initio} calculation and provide
a complete description of the relaxation geometry and energetic for various
charge state of vacancies from both sublattices. Gallium vacancies are stable
in the 0, -, -2, -3 charge state, but V_Ga^-3 remains the dominant charge state
for intrinsic and n-type GaAs, confirming results from positron annihilation.
Interestingly, Arsenic vacancies show two successive negative-U transitions
making only +1, -1 and -3 charge states stable, while the intermediate defects
are metastable. The second transition (-/-3) brings a resonant bond relaxation
for V_As^-3 similar to the one identified for silicon and GaAs divacancies.Comment: 14 page
One-parameter scaling theory for DNA extension in a nanochannel
Experiments measuring DNA extension in nanochannels are at odds with even the
most basic predictions of current scaling arguments for the conformations of
confined semiflexible polymers such as DNA. We show that a theory based on a
weakly self-avoiding, one-dimensional "telegraph" process collapses
experimental data and simulation results onto a single master curve throughout
the experimentally relevant region of parameter space and explains the
mechanisms at play.Comment: Revised version. 5 pages, 4 figures, revised version, supplementary
informatio
Phase transition in a super superspin glass
We here confirm the occurrence of spin glass phase transition and extract
estimates of associated critical exponents of a highly monodisperse and densely
compacted system of bare maghemite nanoparticles. This system has earlier been
found to behave like an archetypal spin glass, with e.g. a sharp transition
from paramagnetic to non-equilibrium behavior, suggesting that this system
undergoes a spin-glass phase transition at a relatively high temperature,
140 K.Comment: 4 pages, 3 figure
X-ray induced electronic structure change in CuIrS
The electronic structure of CuIrS has been investigated using various
bulk-sensitive x-ray spectroscopic methods near the Ir -edge: resonant
inelastic x-ray scattering (RIXS), x-ray absorption spectroscopy in the partial
fluorescence yield (PFY-XAS) mode, and resonant x-ray emission spectroscopy
(RXES). A strong RIXS signal (0.75 eV) resulting from a charge-density-wave gap
opening is observed below the metal-insulator transition temperature of 230 K.
The resultant modification of electronic structure is consistent with the
density functional theory prediction. In the spin- and charge- dimer disordered
phase induced by x-ray irradiation below 50 K, we find that a broad peak around
0.4 eV appears in the RIXS spectrum.Comment: 4 pages and 4 figure
Independent ferroelectric contributions and rare-earth-induced polarization reversal in multiferroic TbMn2O5
Three independent contributions to the magnetically induced spontaneous
polarization of multiferroic TbMn2O5 are uniquely separated by optical second
harmonic generation and an analysis in terms of Landau theory. Two of them are
related to the magnetic Mn3+/4+ order and are independent of applied fields of
up to 7 T. The third contribution is related to the long-range
antiferromagnetic Tb3+ order. It shows a drastic decrease upon the application
of a magnetic field and mediates the change of sign of the spontaneous electric
polarization in TbMn2O5. The close relationship between the rare-earth
long-range order and the non-linear optical properties points to isotropic
Tb-Tb exchange and oxygen spin polarization as mechanism for this rare-earth
induced ferroelectricity.Comment: 8 pages, 5 figure
Strengthening the Cohomological Crepant Resolution Conjecture for Hilbert-Chow morphisms
Given any smooth toric surface S, we prove a SYM-HILB correspondence which
relates the 3-point, degree zero, extended Gromov-Witten invariants of the
n-fold symmetric product stack [Sym^n(S)] of S to the 3-point extremal
Gromov-Witten invariants of the Hilbert scheme Hilb^n(S) of n points on S. As
we do not specialize the values of the quantum parameters involved, this result
proves a strengthening of Ruan's Cohomological Crepant Resolution Conjecture
for the Hilbert-Chow morphism from Hilb^n(S) to Sym^n(S) and yields a method of
reconstructing the cup product for Hilb^n(S) from the orbifold invariants of
[Sym^n(S)].Comment: Revised versio
- …
