8,101 research outputs found
Using Swing Resistance and Assistance to Improve Gait Symmetry in Individuals Post-Stroke
A major characteristic of hemiplegic gait observed in individuals post-stroke is spatial and temporal asymmetry, which may increase energy expenditure and the risk of falls. The purpose of this study was to examine the effects of swing resistance/assistance applied to the affected leg on gait symmetry in individuals post-stroke. We recruited 10 subjects with chronic stroke who demonstrated a shorter step length with their affected leg in comparison to the non-affected leg during walking. They participated in two test sessions for swing resistance and swing assistance, respectively. During the adaptation period, subjects counteracted the step length deviation caused by the applied swing resistance force, resulting in an aftereffect consisting of improved step length symmetry during the post-adaptation period. In contrast, subjects did not counteract step length deviation caused by swing assistance during adaptation period and produced no aftereffect during the post-adaptation period. Locomotor training with swing resistance applied to the affected leg may improve step length symmetry through error-based learning. Swing assistance reduces errors in step length during stepping; however, it is unclear whether this approach would improve step length symmetry. Results from this study may be used to develop training paradigms for improving gait symmetry of stroke survivors
Effects of initial state fluctuations on jet energy loss
The effect of initial state fluctuations on jet energy loss in relativistic
heavy-ion collisions is studied in a 2+1 dimension ideal hydrodynamic model.
Within the next-to-leading order perturbative QCD description of hard
scatterings, we find that a jet loses slightly more energy in the expanding
quark-gluon plasma if the latter is described by the hydrodynamic evolution
with fluctuating initial conditions compared to the case with smooth initial
conditions. A detailed analysis indicates that this is mainly due to the
positive correlation between the fluctuation in the production probability of
parton jets from initial nucleon-nucleon hard collisions and the fluctuation in
the medium density along the path traversed by the jet. This effect is larger
in non-central than in central relativistic heavy ion collisions and also for
jet energy loss that has a linear than a quadratic dependence on its path
length in the medium
High-energy behavior of the nuclear symmetry potential in asymmetric nuclear matter
Using the relativistic impulse approximation with empirical NN scattering
amplitude and the nuclear scalar and vector densities from the relativistic
mean-field theory, we evaluate the Dirac optical potential for neutrons and
protons in asymmetric nuclear matter. From the resulting Schr\"{o}%
dinger-equivalent potential, the high energy behavior of the nuclear symmetry
potential is studied. We find that the symmetry potential at fixed baryon
density is essentially constant once the nucleon kinetic energy is greater than
about 500 MeV. Moreover, for such high energy nucleon, the symmetry potential
is slightly negative below a baryon density of about fm
and then increases almost linearly to positive values at high densities. Our
results thus provide an important constraint on the energy and density
dependence of nuclear symmetry potential in asymmetric nuclear matter.Comment: 6 pages, 5 figures, revised version, to appear in PR
Robotic Resistance/Assistance Training Improves Locomotor Function in Individuals Poststroke: A Randomized Controlled Study
Objective To determine whether providing a controlled resistance versus assistance to the paretic leg at the ankle during treadmill training will improve walking function in individuals poststroke. Design Repeated assessment of the same patients with parallel design and randomized controlled study between 2 groups. Setting Research units of rehabilitation hospitals. Participants Patients (N=30) with chronic stroke. Intervention Subjects were stratified based on self-selected walking speed and were randomly assigned to the resistance or assistance training group. For the resistance group, a controlled resistance load was applied to the paretic leg at the ankle to resist leg swing during treadmill walking. For the assistance group, a load that assists swing was applied. Main Outcome Measures Primary outcome measures were walking speed and 6-minute walking distance. Secondary measures included clinical assessments of balance, muscle tone, and quality of life. Outcome measures were evaluated before and after 6 weeks of training and at 8 weeks\u27 follow-up, and compared within group and between the 2 groups. Results After 6 weeks of robotic training, walking speed significantly increased for both groups, with no significant differences in walking speed gains observed between the 2 groups. In addition, 6-minute walking distance and balance significantly improved for the assistance group but not for the resistance group. Conclusions Applying a controlled resistance or an assistance load to the paretic leg during treadmill training may induce improvements in walking speed in individuals poststroke. Resistance training was not superior to assistance training in improving locomotor function in individuals poststroke
A Novel Cable-Driven Robotic Training Improves Locomotor Function in Individuals Post-Stroke
A novel cable-driven robotic gait training system has been tested to improve the locomotor function in individuals post stroke. Seven subjects with chronic stroke were recruited to participate in this 6 weeks robot-assisted treadmill training paradigm. A controlled assistance force was applied to the paretic leg at the ankle through a cable-driven robotic system. The force was applied from late stance to mid-swing during treadmill training. Body weight support was provided as necessary to prevent knee buckling or toe drag. Subjects were trained 3 times a week for 6 weeks. Overground gait speed, 6 minute walking distance, and balance were evaluated at pre, post 6 weeks robotic training, and at 8 weeks follow up. Significant improvements in gait speed and 6 minute walking distance were obtained following robotic treadmill training through a cable-driven robotic system. Results from this study indicate that it is feasible to improve the locomotor function in individuals post stroke through a flexible cable-driven robot
Determination of the stiffness of the nuclear symmetry energy from isospin diffusion
With an isospin- and momentum-dependent transport model, we find that the
degree of isospin diffusion in heavy ion collisions at intermediate energies is
affected by both the stiffness of the nuclear symmetry energy and the momentum
dependence of the nucleon potential. Using a momentum dependence derived from
the Gogny effective interaction, recent experimental data from NSCL/MSU on
isospin diffusion are shown to be consistent with a nuclear symmetry energy
given by at
subnormal densities. This leads to a significantly constrained value of about
-550 MeV for the isospin-dependent part of the isobaric incompressibility of
isospin asymmetric nuclear matter.Comment: 4 pages, 4 figures, 1 table, revised version, to appear in PR
Design and performance of a shunt active power filter for three-phase four-wire system
Author name used in this publication: K. W. E. ChengVersion of RecordPublishe
Application of ForceControl in the vehicle gasohol delivery system
Version of RecordPublishe
- …