1,361 research outputs found

    More security or less insecurity

    Get PDF
    We depart from the conventional quest for ‘Completely Secure Systems’ and ask ‘How can we be more Secure’. We draw heavily from the evolution of the Theory of Justice and the arguments against the institutional approach to Justice. Central to our argument is the identification of redressable insecurity, or weak links. Our contention is that secure systems engineering is not really about building perfectly secure systems but about redressing manifest insecurities.Final Accepted Versio

    Anonymous quantum communication

    Full text link
    We present the first protocol for the anonymous transmission of a quantum state that is information-theoretically secure against an active adversary, without any assumption on the number of corrupt participants. The anonymity of the sender and receiver is perfectly preserved, and the privacy of the quantum state is protected except with exponentially small probability. Even though a single corrupt participant can cause the protocol to abort, the quantum state can only be destroyed with exponentially small probability: if the protocol succeeds, the state is transferred to the receiver and otherwise it remains in the hands of the sender (provided the receiver is honest).Comment: 11 pages, to appear in Proceedings of ASIACRYPT, 200

    Quantum protocols for anonymous voting and surveying

    Get PDF
    We describe quantum protocols for voting and surveying. A key feature of our schemes is the use of entangled states to ensure that the votes are anonymous and to allow the votes to be tallied. The entanglement is distributed over separated sites; the physical inaccessibility of any one site is sufficient to guarantee the anonymity of the votes. The security of these protocols with respect to various kinds of attack is discussed. We also discuss classical schemes and show that our quantum voting protocol represents a N-fold reduction in computational complexity, where N is the number of voters.Comment: 8 pages. V2 includes the modifications made for the published versio

    Compositional closure for Bayes Risk in probabilistic noninterference

    Full text link
    We give a sequential model for noninterference security including probability (but not demonic choice), thus supporting reasoning about the likelihood that high-security values might be revealed by observations of low-security activity. Our novel methodological contribution is the definition of a refinement order and its use to compare security measures between specifications and (their supposed) implementations. This contrasts with the more common practice of evaluating the security of individual programs in isolation. The appropriateness of our model and order is supported by our showing that our refinement order is the greatest compositional relation --the compositional closure-- with respect to our semantics and an "elementary" order based on Bayes Risk --- a security measure already in widespread use. We also relate refinement to other measures such as Shannon Entropy. By applying the approach to a non-trivial example, the anonymous-majority Three-Judges protocol, we demonstrate by example that correctness arguments can be simplified by the sort of layered developments --through levels of increasing detail-- that are allowed and encouraged by compositional semantics

    Fair and optimistic quantum contract signing

    Full text link
    We present a fair and optimistic quantum contract signing protocol between two clients that requires no communication with the third trusted party during the exchange phase. We discuss its fairness and show that it is possible to design such a protocol for which the probability of a dishonest client to cheat becomes negligible, and scales as N^{-1/2}, where N is the number of messages exchanged between the clients. Our protocol is not based on the exchange of signed messages: its fairness is based on the laws of quantum mechanics. Thus, it is abuse-free, and the clients do not have to generate new keys for each message during the Exchange phase. We discuss a real-life scenario when the measurement errors and qubit state corruption due to noisy channels occur and argue that for real, good enough measurement apparatus and transmission channels, our protocol would still be fair. Our protocol could be implemented by today's technology, as it requires in essence the same type of apparatus as the one needed for BB84 cryptographic protocol. Finally, we briefly discuss two alternative versions of the protocol, one that uses only two states (based on B92 protocol) and the other that uses entangled pairs, and show that it is possible to generalize our protocol to an arbitrary number of clients.Comment: 11 pages, 2 figure

    Information Security as Strategic (In)effectivity

    Full text link
    Security of information flow is commonly understood as preventing any information leakage, regardless of how grave or harmless consequences the leakage can have. In this work, we suggest that information security is not a goal in itself, but rather a means of preventing potential attackers from compromising the correct behavior of the system. To formalize this, we first show how two information flows can be compared by looking at the adversary's ability to harm the system. Then, we propose that the information flow in a system is effectively information-secure if it does not allow for more harm than its idealized variant based on the classical notion of noninterference

    Making Code Voting Secure against Insider Threats using Unconditionally Secure MIX Schemes and Human PSMT Protocols

    Full text link
    Code voting was introduced by Chaum as a solution for using a possibly infected-by-malware device to cast a vote in an electronic voting application. Chaum's work on code voting assumed voting codes are physically delivered to voters using the mail system, implicitly requiring to trust the mail system. This is not necessarily a valid assumption to make - especially if the mail system cannot be trusted. When conspiring with the recipient of the cast ballots, privacy is broken. It is clear to the public that when it comes to privacy, computers and "secure" communication over the Internet cannot fully be trusted. This emphasizes the importance of using: (1) Unconditional security for secure network communication. (2) Reduce reliance on untrusted computers. In this paper we explore how to remove the mail system trust assumption in code voting. We use PSMT protocols (SCN 2012) where with the help of visual aids, humans can carry out mod10\mod 10 addition correctly with a 99\% degree of accuracy. We introduce an unconditionally secure MIX based on the combinatorics of set systems. Given that end users of our proposed voting scheme construction are humans we \emph{cannot use} classical Secure Multi Party Computation protocols. Our solutions are for both single and multi-seat elections achieving: \begin{enumerate}[i)] \item An anonymous and perfectly secure communication network secure against a tt-bounded passive adversary used to deliver voting, \item The end step of the protocol can be handled by a human to evade the threat of malware. \end{enumerate} We do not focus on active adversaries

    DRE-ip : A Verifiable E-Voting Scheme without Tallying Authorities

    Get PDF
    Nearly all verifiable e-voting schemes require trustworthy authorities to perform the tallying operations. An exception is the DRE-i system which removes this requirement by pre-computing all encrypted ballots before the election using random factors that will later cancel out and allow the public to verify the tally after the election. While the removal of tallying authorities significantly simplifies election management, the pre-computation of ballots necessitates secure ballot storage, as leakage of precomputed ballots endangers voter privacy. In this paper, we address this problem and propose DRE-ip (DRE-i with enhanced privacy). Adopting a different design strategy, DRE-ip is able to encrypt ballots in real time in such a way that the election tally can be publicly verified without decrypting the cast ballots. As a result, DRE-ip achieves end-to-end verifiability without tallying authorities, similar to DRE-i, but with a significantly stronger guarantee on voter privacy. In the event that the voting machine is fully compromised, the assurance on tallying integrity remains intact and the information leakage is limited to the minimum: only the partial tally at the time of compromise is leaked

    Information Leakage Games

    Full text link
    We consider a game-theoretic setting to model the interplay between attacker and defender in the context of information flow, and to reason about their optimal strategies. In contrast with standard game theory, in our games the utility of a mixed strategy is a convex function of the distribution on the defender's pure actions, rather than the expected value of their utilities. Nevertheless, the important properties of game theory, notably the existence of a Nash equilibrium, still hold for our (zero-sum) leakage games, and we provide algorithms to compute the corresponding optimal strategies. As typical in (simultaneous) game theory, the optimal strategy is usually mixed, i.e., probabilistic, for both the attacker and the defender. From the point of view of information flow, this was to be expected in the case of the defender, since it is well known that randomization at the level of the system design may help to reduce information leaks. Regarding the attacker, however, this seems the first work (w.r.t. the literature in information flow) proving formally that in certain cases the optimal attack strategy is necessarily probabilistic
    corecore