25 research outputs found

    Mapping the Organization of Axis of Motion Selective Features in Human Area MT Using High-Field fMRI

    Get PDF
    Functional magnetic resonance imaging (fMRI) at high magnetic fields has made it possible to investigate the columnar organization of the human brain in vivo with high degrees of accuracy and sensitivity. Until now, these results have been limited to the organization principles of early visual cortex (V1). While the middle temporal area (MT) has been the first identified extra-striate visual area shown to exhibit a columnar organization in monkeys, evidence of MT's columnar response properties and topographic layout in humans has remained elusive. Research using various approaches suggests similar response properties as in monkeys but failed to provide direct evidence for direction or axis of motion selectivity in human area MT. By combining state of the art pulse sequence design, high spatial resolution in all three dimensions (0.8 mm isotropic), optimized coil design, ultrahigh field magnets (7 Tesla) and novel high resolution cortical grid sampling analysis tools, we provide the first direct evidence for large-scale axis of motion selective feature organization in human area MT closely matching predictions from topographic columnar-level simulations

    Knowing with Which Eye We See: Utrocular Discrimination and Eye-Specific Signals in Human Visual Cortex

    Get PDF
    Neurophysiological and behavioral reports converge to suggest that monocular neurons in the primary visual cortex are biased toward low spatial frequencies, while binocular neurons favor high spatial frequencies. Here we tested this hypothesis with functional magnetic resonance imaging (fMRI). Human participants viewed flickering gratings at one of two spatial frequencies presented to either the left or the right eye, and judged which of the two eyes was being stimulated (utrocular discrimination). Using multivoxel pattern analysis we found that local spatial patterns of signals in primary visual cortex (V1) allowed successful decoding of the eye-of-origin. Decoding was above chance for low but not high spatial frequencies, confirming the presence of a bias reported by animal studies in human visual cortex. Behaviorally, we found that reliable judgment of the eye-of-origin did not depend on spatial frequency. We further analyzed the mean response in visual cortex to our stimuli and revealed a weak difference between left and right eye stimulation. Our results are thus consistent with the interpretation that participants use overall levels of neural activity in visual cortex, perhaps arising due to local luminance differences, to judge the eye-of-origin. Taken together, we show that it is possible to decode eye-specific voxel pattern information in visual cortex but, at least in healthy participants with normal binocular vision, these patterns are unrelated to awareness of which eye is being stimulated

    A more accurate account of the effect of k-space sampling and signal decay on the effective spatial resolution in functional MRI

    No full text
    The effects of k-space sampling and signal decay on the effective spatial resolution of MRI and functional MRI (fMRI) are commonly assessed by means of the magnitude point-spread function (PSF), defined as the absolute values (magnitudes) of the complex MR imaging PSF. It is commonly assumed that this magnitude PSF signifies blurring, which can be quantified by its full-width at half-maximum (FWHM). Here we show that the magnitude PSF fails to accurately represent the true effects of k-space sampling and signal decay.Firstly, a substantial part of the width of the magnitude PSF is due to MRI sampling per se. This part is independent of any signal decay and its effect depends on the spatial frequency composition of the imaged object. Therefore, it cannot always be expected to introduce blurring. Secondly, MRI reconstruction is typically followed by taking the absolute values (magnitude image) of the reconstructed complex image. This introduces a non-linear stage into the process of image formation. The complex imaging PSF does not fully describe this process, since it does not reflect the stage of taking the magnitude image. Its corresponding magnitude PSF fails to correctly describe this process, since convolving the original pattern with the magnitude PSF is different from the true process of taking the absolute following a convolution with the complex imaging PSF. Lastly, signal decay can have not only a blurring, but also a high-pass filtering effect. This cannot be reflected by the strictly positive width of the magnitude PSF.As an alternative, we propose to first approximate the MRI process linearly. We then model the linear approximation by decomposing it into a signal decay-independent MR sampling part and an approximation of the signal decay effect. We approximate the latter as a convolution with a Gaussian PSF or, if the effect is that of high-pass filtering, as reversing the effect of a convolution with a Gaussian PSF. We show that for typical high-resolution fMRI at 7 Tesla, signal decay in Spin-Echo has a moderate blurring effect (FWHM = 0.89 voxels, corresponds to 0.44 mm for 0.5 mm wide voxels). In contrast, Gradient-Echo acts as a moderate high-pass filter that can be interpreted as reversing a Gaussian blurring with FWHM = 0.59 voxels (0.30 mm for 0.5 mm wide voxels). Our improved approximations and findings hold not only for Gradient-Echo and Spin-Echo fMRI but also for GRASE and VASO fMRI. Our findings support the correct planning, interpretation, and modeling of high-resolution fMRI

    Quantification of Anterogradely Stained Axons in the Cerebral Cortex

    No full text
    One of the main features of the cerebral cortex is its vast internal connectivity. Understanding this connectivity will most likely play a major part in understanding cortical function. Theoretical studies based on quantitative neuroanatomical data are one important approach to reveal fundamental processing principles in this complex structure. In order to provide such data, we are studying cortico-cortical connections in the mouse cortex by way of the anterograde tracer BDA (biotinylated dextran amine). One of the aims of this study is to gain knowledge about the strength of connections between distant places in the cortex. The number of synapses one region makes with another is closely related to the total length of axonal ramications the projecting neurons make in that terminal region. This implies that the density of these axonal ramications reects the inuence from the injection site onto this region. Therefore, the length and density of labeled axons in a terminal region is a measure of the connectivity from the site of injection to this region. A method was developed for estimating axonal length density (length per volume) of stained axons in regions of termination using stereological priciples (i.e. deriving higher dimension features based on measurements made in a low dimension). The method consists mainly of counting intersections between labeled axons and specially designed test lines, providing a simple quantication of tracing results

    Quantitative Aspects of Corticocortical Connections: A Tracer Study in the Mouse

    No full text
    This study provides neuroanatomical data relevant to models and simulations of the propagation of activity over the cortex. We administered small injections of the anterograde tracer biotinylated dextran amine to various regions of the mouse cortex (1 per animal). Two-dimensional reconstructions of the cortical surface were made, showing the distribution, size, and density of the terminal fields. Within the injected hemisphere, the largest part of the terminal field always surrounded the injection site and extended over neighboring areas. On average, axons from injection sites of 8804;0.1 mm2 (containing several thousand neurons) diverged onto a region about 180 times larger than the injection site. The density of stained fibers in distant terminal fields could reach about 25 m/mm3. More than half of the total terminal field from an individual injection site consisted of weak projections with densities of 3 or 4 m/mm3. The number of main axons entering an individual distant terminal field ranged between 14 and about 890. By indirect arguments we estimate that the density of stained fibers close to the injection site is 3–6 times that in the most densely labeled distant terminal fields. In addition to symmetric projections to the opposite hemisphere, nonhomotopic callosal projections were found

    Optimization of functional MRI for detection, decoding and high-resolution imaging of the response patterns of cortical columns

    No full text
    The capacity of functional MRI (fMRI) to resolve cortical columns depends on several factors. These include the spatial scale of the columnar pattern, the point-spread of the fMRI response, the voxel size, and the signal-to-noise ratio (SNR) considering thermal and physiological noise. However, it remains unknown how these factors combine, and what is the voxel size that optimizes fMRI of cortical columns. Here we combine current knowledge into a quantitative model of fMRI of realistic patterns of cortical columns with different spatial scales and degrees of irregularity. We compare different approaches for identifying patterns of cortical columns, including univariate and multivariate based detection, multi-voxel pattern analysis (MVPA) based decoding, and high-resolution imaging and reconstruction of the pattern of cortical columns. We present the dependence of the performance of each approach on the parameters of the imaged pattern as well as those of the data acquisition. In addition, we predict voxel sizes that optimize fMRI of cortical columns under various scenarios. We found that all measures associated with multivariate detection and decoding could be approximately calculated from a measure we termed “multivariate contrast-to-noise ratio” (mv-CNR), which is a function of the contrast-to-noise ratio (CNR) and number of voxels. Furthermore, mv-CNR implied that the optimal voxel width for detection and decoding is independent of changes in response amplitude, SNR and imaged volume that are not caused by changes in voxel size. For regular patterns, optimal voxel widths for detection, decoding and imaging/reconstructing the pattern of cortical columns were approximately half the main cycle length of the organization. Optimal voxel widths for irregular patterns were less dependent on the main cycle length, and differed between univariate detection, multivariate detection and decoding, and reconstruction. We compared the effects of different factors of Gradient Echo fMRI at 3 Tesla (T), Gradient Echo fMRI at 7T, and Spin-Echo fMRI at 7T on the detection, decoding, and reconstruction measures considered and found that in all cases the width of the fMRI point-spread had the most significant effect. In contrast, different response amplitudes and noise characteristics played a relatively minor role. We recommend specific voxel widths for optimal univariate detection, for multivariate detection and decoding, and for high-resolution imaging of cortical columns under these three data-acquisition scenarios. Our study supports the planning, optimization, and interpretation of high-resolution fMRI of cortical columns and the decoding of information conveyed by these columns

    Spatial specificity of the functional MRI blood oxygenation response relative to neuronal activity

    No full text
    Previous attempts at characterizing the spatial specificity of the blood oxygenation level dependent functional MRI (BOLD fMRI) response by estimating its point-spread function (PSF) have conventionally relied on retinotopic spatial representations of visual stimuli in area V1. Consequently, their estimates were confounded by the width and scatter of receptive fields of V1 neurons. Here, we circumvent these limits by instead using the inherent cortical spatial organization of ocular dominance columns (ODCs) to determine the PSF for both Gradient Echo (GE) and Spin Echo (SE) BOLD imaging at 7 Tesla. By applying Markov chain Monte Carlo sampling on a probabilistic generative model of imaging ODCs, we quantified the PSFs that best predict the spatial structure and magnitude of differential ODCs' responses. Prior distributions for the ODC model parameters were determined by analyzing published data of cytochrome oxidase patterns from post-mortem histology of human V1 and of neurophysiological ocular dominance indices. The average PSF full-widths at half-maximum obtained from differential ODCs' responses following the removal of voxels influenced by contributions from macroscopic blood vessels were 0.86 mm (SE) and 0.99 mm (GE). Our results provide a quantitative basis for the spatial specificity of BOLD fMRI at ultra-high fields, which can be used for planning and interpretation of high-resolution differential fMRI of fine-scale cortical organizations
    corecore