2,844 research outputs found
New adatom model for Si(11) 7X7 and Si(111)Ge 5X5 reconstructed surfaces
A new adatom model differing from the conventional model by a reconstruction of the substrate is proposed. The new adatom structure provides an explanation for the 7x7 and 5x5 size of the unit cells seen on annealed Si(111) and Si(111)-Ge surfaces, respectively. The model is consistent with structural information from vacuum-tunneling microscopy. It also provides simple explanations for stacking-fault-type features expected from Rutherford backscattering experiments and for similarities in the LEED and photoemission spectra of 2x1 and 7x7 surfaces
A new type of reconstruction on the InSb() surface determined by grazing incidence X-ray diffraction
The (3×3) reconstruction of the InSb( ) surface has been investigated by grazing incidence X-ray diffraction and scanning tunneling microscopy. The structure is characterized by 6-atom rings on top of a slightly buckled InSb top double layer. Two types of rings have been found, an elliptic ring consisting of 4 In and 2 Sb atoms and a trigonal ring with 3 In and 3 Sb atoms. The bond angles and lengths are consistent with the concept of rehybridization and depolarization which explains the reconstructions of the (111) and (110) surfaces
Proton Heating in Solar Wind Compressible Turbulence with Collisions between Counter-propagating Waves
Magnetohydronamic turbulence is believed to play a crucial role in heating
the laboratorial, space, and astrophysical plasmas. However, the precise
connection between the turbulent fluctuations and the particle kinetics has not
yet been established. Here we present clear evidence of plasma turbulence
heating based on diagnosed wave features and proton velocity distributions from
solar wind measurements by the Wind spacecraft. For the first time, we can
report the simultaneous observation of counter-propagating magnetohydrodynamic
waves in the solar wind turbulence. Different from the traditional paradigm
with counter-propagating Alfv\'en waves, anti-sunward Alfv\'en waves (AWs) are
encountered by sunward slow magnetosonic waves (SMWs) in this new type of solar
wind compressible turbulence. The counter-propagating AWs and SWs correspond
respectively to the dominant and sub-dominant populations of the imbalanced
Els\"asser variables. Nonlinear interactions between the AWs and SMWs are
inferred from the non-orthogonality between the possible oscillation direction
of one wave and the possible propagation direction of the other. The associated
protons are revealed to exhibit bi-directional asymmetric beams in their
velocity distributions: sunward beams appearing in short and narrow patterns
and anti-sunward broad extended tails. It is suggested that multiple types of
wave-particle interactions, i.e., cyclotron and Landau resonances with AWs and
SMWs at kinetic scales, are taking place to jointly heat the protons
perpendicularly and parallel
Anion vacancies as a source of persistent photoconductivity in II-VI and chalcopyrite semiconductors
Using first-principles electronic structure calculations we identify the
anion vacancies in II-VI and chalcopyrite Cu-III-VI2 semiconductors as a class
of intrinsic defects that can exhibit metastable behavior. Specifically, we
predict persistent electron photoconductivity (n-type PPC) caused by the oxygen
vacancy VO in n-ZnO, and persistent hole photoconductivity (p-type PPC) caused
by the Se vacancy VSe in p-CuInSe2 and p-CuGaSe2. We find that VSe in the
chalcopyrite materials is amphoteric having two "negative-U" like transitions,
i.e. a double-donor transition e(2+/0) close to the valence band and a
double-acceptor transition e(0/2-) closer to the conduction band. We introduce
a classification scheme that distinguishes two types of defects (e.g., donors):
type-alpha, which have a defect-localized-state (DLS) in the gap, and
type-beta, which have a resonant DLS within the host bands (e.g., conduction
band). In the latter case, the introduced carriers (e.g., electrons) relax to
the band edge where they can occupy a perturbed-host-state (PHS). Type alpha is
non-conducting, whereas type beta is conducting. We identify the neutral anion
vacancy as type-alpha and the doubly positively charged vacancy as type-beta.
We suggest that illumination changes the charge state of the anion vacancy and
leads to a crossover between alpha- and beta-type behavior, resulting in
metastability and PPC. In CuInSe2, the metastable behavior of VSe is carried
over to the (VSe-VCu) complex, which we identify as the physical origin of PPC
observed experimentally. We explain previous puzzling experimental results in
ZnO and CuInSe2 in the light of this model.Comment: submitted to Phys. Rev.
Coupled-barrier diffusion: the case of oxygen in silicon
Oxygen migration in silicon corresponds to an apparently simple jump between
neighboring bridge sites. Yet, extensive theoretical calculations have so far
produced conflicting results and have failed to provide a satisfactory account
of the observed eV activation energy. We report a comprehensive set of
first-principles calculations that demonstrate that the seemingly simple oxygen
jump is actually a complex process involving coupled barriers and can be
properly described quantitatively in terms of an energy hypersurface with a
``saddle ridge'' and an activation energy of eV. Earlier
calculations correspond to different points or lines on this hypersurface.Comment: 4 Figures available upon request. Accepted for publication in Phys.
Rev. Let
First-principles study of As interstitials in GaAs: Convergence, relaxation, and formation energy
Convergence of density-functional supercell calculations for defect formation
energies, charge transition levels, localized defect state properties, and
defect atomic structure and relaxation is investigated using the arsenic split
interstitial in GaAs as an example. Supercells containing up to 217 atoms and a
variety of {\bf k}-space sampling schemes are considered. It is shown that a
good description of the localized defect state dispersion and charge state
transition levels requires at least a 217-atom supercell, although the defect
structure and atomic relaxations can be well converged in a 65-atom cell.
Formation energies are calculated for the As split interstitial, Ga vacancy,
and As antisite defects in GaAs, taking into account the dependence upon
chemical potential and Fermi energy. It is found that equilibrium
concentrations of As interstitials will be much lower than equilibrium
concentrations of As antisites in As-rich, -type or semi-insulating GaAs.Comment: 10 pages, 5 figure
Structure and Stability of Si(114)-(2x1)
We describe a recently discovered stable planar surface of silicon, Si(114).
This high-index surface, oriented 19.5 degrees away from (001) toward (111),
undergoes a 2x1 reconstruction. We propose a complete model for the
reconstructed surface based on scanning tunneling microscopy images and
first-principles total-energy calculations. The structure and stability of
Si(114)-(2x1) arises from a balance between surface dangling bond reduction and
surface stress relief, and provides a key to understanding the morphology of a
family of surfaces oriented between (001) and (114).Comment: REVTeX, 4 pages + 3 figures. A preprint with high-resolution figures
is available at http://cst-www.nrl.navy.mil/papers/si114.ps . To be published
in Phys. Rev. Let
Atomic structure of Ge quantum dots on the Si(001) surface
In situ morphological investigation of the {105} faceted Ge islands on the
Si(001) surface (hut clusters) have been carried out using an ultra high vacuum
instrument integrating a high resolution scanning tunnelling microscope and a
molecular beam epitaxy vessel. Both species of hut clusters--pyramids and
wedges--were found to have the same structure of the {105} facets which was
visualized. Structures of vertexes of the pyramidal clusters and ridges of the
wedge-shaped clusters were revealed as well and found to be different. This
allowed us to propose a crystallographic model of the {105} facets as well as
models of the atomic structure of both species of the hut clusters. An
inference is made that transitions between the cluster shapes are impossible.Comment: 6 pages, 6 figures. Accepted to JETP Letters (publication date
2010-03-25
On the Origin of the -4.4 eV Band in CdTe(100)"
We calculate the bulk- (infinite system), (100)-bulk-projected- and
(100)-Surface-projected Green's functions using the Surface Green's Function
Matching method (SGFM) and an empirical tight-binding hamiltonian with
tight-binding parameters (TBP) that describe well the bulk band structure of
CdTe. In particular, we analyze the band (B--4) arising at --4.4 eV from the
top of the valence band at according to the results of Niles and
H\"ochst and at -4.6 eV according to Gawlik {\it et al.} both obtained by
Angle-resolved photoelectron spectroscopy (ARPES). We give the first
theoretical description of this band.Comment: 17 pages, Rev-TEX, CIEA-Phys. 02/9
- …
