1,652 research outputs found
Photoinduced Electron Pairing in a Driven Cavity
We demonstrate how virtual scattering of laser photons inside a cavity via two-photon processes can induce controllable long-range electron interactions in two-dimensional materials. We show that laser light that is red (blue) detuned from the cavity yields attractive (repulsive) interactions whose strength is proportional to the laser intensity. Furthermore, we find that the interactions are not screened effectively except at very low frequencies. For realistic cavity parameters, laser-induced heating of the electrons by inelastic photon scattering is suppressed and coherent electron interactions dominate. When the interactions are attractive, they cause an instability in the Cooper channel at a temperature proportional to the square root of the driving intensity. Our results provide a novel route for engineering electron interactions in a wide range of two-dimensional materials including AB-stacked bilayer graphene and the conducting interface between LaAlO3 and SrTiO3
Anomalous relaxation kinetics and charge density wave correlations in underdoped BaPb1-xBixO3
Superconductivity often emerges in proximity of other symmetry-breaking
ground states, such as antiferromagnetism or charge-density-wave (CDW) order.
However, the subtle inter-relation of these phases remains poorly understood,
and in some cases even the existence of short-range correlations for
superconducting compositions is uncertain. In such circumstances, ultrafast
experiments can provide new insights, by tracking the relaxation kinetics
following excitation at frequencies related to the broken symmetry state. Here,
we investigate the transient terahertz conductivity of BaPb1-xBixO3 - a
material for which superconductivity is adjacent to a competing CDW phase -
after optical excitation tuned to the CDW absorption band. In insulating BaBiO3
we observed an increase in conductivity and a subsequent relaxation, which are
consistent with quasiparticles injection across a rigid semiconducting gap. In
the doped compound BaPb0.72Bi0.28O3 (superconducting below Tc=7K), a similar
response was also found immediately above Tc. This observation evidences the
presence of a robust gap up to T=40 K, which is presumably associated with
short-range CDW correlations. A qualitatively different behaviour was observed
in the same material fo T>40 K. Here, the photo-conductivity was dominated by
an enhancement in carrier mobility at constant density, suggestive of melting
of the CDW correlations rather than excitation across an optical gap. The
relaxation displayed a temperature dependent, Arrhenius-like kinetics,
suggestive of the crossing of a free-energy barrier between two phases. These
results support the existence of short-range CDW correlations above Tc in
underdoped BaPb1-xBixO3, and provide new information on the dynamical interplay
between superconductivity and charge order.Comment: 19 pages, 4 figure
Magnetic-Field Tuning of Light-Induced Superconductivity in Striped LaBaCuO
Optical excitation of stripe-ordered LaBaCuO has been shown
to transiently enhance superconducting tunneling between the CuO planes.
This effect was revealed by a blue-shift, or by the appearance of a Josephson
Plasma Resonance in the terahertz-frequency optical properties. Here, we show
that this photo-induced state can be strengthened by the application of high
external magnetic fields oriented along the c-axis. For a 7-Tesla field, we
observe up to a ten-fold enhancement in the transient interlayer phase
correlation length, accompanied by a two-fold increase in the relaxation time
of the photo-induced state. These observations are highly surprising, since
static magnetic fields suppress interlayer Josephson tunneling and stabilize
stripe order at equilibrium. We interpret our data as an indication that
optically-enhanced interlayer coupling in LaBaCuO does not
originate from a simple optical melting of stripes, as previously hypothesized.
Rather, we speculate that the photo-induced state may emerge from activated
tunneling between optically-excited stripes in adjacent planes.Comment: 35 pages, 13 figure
Quantum Electrodynamic Control of Matter: Cavity-Enhanced Ferroelectric Phase Transition
The light-matter interaction can be utilized to qualitatively alter physical properties of materials. Recent theoretical and experimental studies have explored this possibility of controlling matter by light based on driving many-body systems via strong classical electromagnetic radiation, leading to a time-dependent Hamiltonian for electronic or lattice degrees of freedom. To avoid inevitable heating, pump-probe setups with ultrashort laser pulses have so far been used to study transient light-induced modifications in materials. Here, we pursue yet another direction of controlling quantum matter by modifying quantum fluctuations of its electromagnetic environment. In contrast to earlier proposals on light-enhanced electron-electron interactions, we consider a dipolar quantum many-body system embedded in a cavity composed of metal mirrors and formulate a theoretical framework to manipulate its equilibrium properties on the basis of quantum light-matter interaction. We analyze hybridization of different types of the fundamental excitations, including dipolar phonons, cavity photons, and plasmons in metal mirrors, arising from the cavity confinement in the regime of strong light-matter interaction. This hybridization qualitatively alters the nature of the collective excitations and can be used to selectively control energy-level structures in a wide range of platforms. Most notably, in quantum paraelectrics, we show that the cavity-induced softening of infrared optical phonons enhances the ferroelectric phase in comparison with the bulk materials. Our findings suggest an intriguing possibility of inducing a superradiant-type transition via the light-matter coupling without external pumping. We also discuss possible applications of the cavity-induced modifications in collective excitations to molecular materials and excitonic devices
Terahertz field control of interlayer transport modes in cuprate superconductors
We theoretically show that terahertz pulses with controlled amplitude and
frequency can be used to switch between stable transport modes in layered
superconductors, modelled as stacks of Josephson junctions. We find pulse
shapes that deterministically switch the transport mode between
superconducting, resistive and solitonic states. We develop a simple model that
explains the switching mechanism as a destablization of the centre of mass
excitation of the Josephson phase, made possible by the highly non-linear
nature of the light-matter coupling
Proposed parametric cooling of bilayer cuprate superconductors by terahertz excitation
We propose and analyze a scheme for parametrically cooling bilayer cuprates
based on the selective driving of a -axis vibrational mode. The scheme
exploits the vibration as a transducer making the Josephson plasma frequencies
time-dependent. We show how modulation at the difference frequency between the
intra- and interbilayer plasmon substantially suppresses interbilayer phase
fluctuations, responsible for switching -axis transport from a
superconducting to resistive state. Our calculations indicate that this may
provide a viable mechanism for stabilizing non-equilibrium superconductivity
even above , provided a finite pair density survives between the bilayers
out of equilibrium.Comment: 4 pages + 7 page supplementa
Back and forth from cool core to non-cool core: clues from radio-halos
X-ray astronomers often divide galaxy clusters into two classes: "cool core"
(CC) and "non-cool core" (NCC) objects. The origin of this dichotomy has been
the subject of debate in recent years, between "evolutionary" models (where
clusters can evolve from CC to NCC, mainly through mergers) and "primordial"
models (where the state of the cluster is fixed "ab initio" by early mergers or
pre-heating). We found that in a well-defined sample (clusters in the GMRT
Radio halo survey with available Chandra or XMM-Newton data), none of the
objects hosting a giant radio halo can be classified as a cool core. This
result suggests that the main mechanisms which can start a large scale
synchrotron emission (most likely mergers) are the same that can destroy CC and
therefore strongly supports "evolutionary" models of the CC-NCC dichotomy.
Moreover combining the number of objects in the CC and NCC state with the
number of objects with and without a radio-halo, we estimated that the time
scale over which a NCC cluster relaxes to the CC state, should be larger than
the typical life-time of radio-halos and likely shorter than about 3 Gyr. This
suggests that NCC transform into CC more rapidly than predicted from the
cooling time, which is about 10 Gyr in NCC systems, allowing the possibility of
a cyclical evolution between the CC and NCC states.Comment: Accepted for publication in A&
On a modified-Lorentz-transformation based gravity model confirming basic GRT experiments
Implementing Poincar\'e's `geometric conventionalism' a scalar
Lorentz-covariant gravity model is obtained based on gravitationally modified
Lorentz transformations (or GMLT). The modification essentially consists of an
appropriate space-time and momentum-energy scaling ("normalization") relative
to a nondynamical flat background geometry according to an isotropic,
nonsingular gravitational `affecting' function Phi(r). Elimination of the
gravitationally `unaffected' S_0 perspective by local composition of space-time
GMLT recovers the local Minkowskian metric and thus preserves the invariance of
the locally observed velocity of light. The associated energy-momentum GMLT
provides a covariant Hamiltonian description for test particles and photons
which, in a static gravitational field configuration, endorses the four `basic'
experiments for testing General Relativity Theory: gravitational i) deflection
of light, ii) precession of perihelia, iii) delay of radar echo, iv) shift of
spectral lines. The model recovers the Lagrangian of the Lorentz-Poincar\'e
gravity model by Torgny Sj\"odin and integrates elements of the precursor
gravitational theories, with spatially Variable Speed of Light (VSL) by
Einstein and Abraham, and gravitationally variable mass by Nordstr\"om.Comment: v1: 14 pages, extended version of conf. paper PIRT VIII, London,
2002. v2: section added on effective tensorial rank, references added,
appendix added, WEP issue deleted, abstract and other parts rewritten, same
results (to appear in Found. Phys.
Dynamical decoherence of the light induced interlayer coupling in YBaCuO
Optical excitation of apical oxygen vibrations in
YBaCuO has been shown to enhance its c-axis
superconducting-phase rigidity, as evidenced by a transient blue shift of the
equilibrium inter-bilayer Josephson plasma resonance. Surprisingly, a transient
c-axis plasma mode could also be induced above T by the same apical
oxygen excitation, suggesting light activated superfluid tunneling throughout
the pseudogap phase of YBaCuO. However, despite the
similarities between the above T transient plasma mode and the
equilibrium Josephson plasmon, alternative explanations involving high mobility
quasiparticle transport should be considered. Here, we report an extensive
study of the relaxation of the light-induced plasmon into the equilibrium
incoherent phase. These new experiments allow for a critical assessment of the
nature of this mode. We determine that the transient plasma relaxes through a
collapse of its coherence length rather than its carrier (or superfluid)
density. These observations are not easily reconciled with quasiparticle
interlayer transport, and rather support transient superfluid tunneling as the
origin of the light-induced interlayer coupling in
YBaCuO.Comment: 27 pages (17 pages main text, 10 pages supplementary), 5 figures
(main text
- …