269 research outputs found

    Whole-genome doubling affects pre-mirna expression in plants

    Get PDF
    Whole-genome doubling (polyploidy) is common in angiosperms. Several studies have indicated that it is often associated with molecular, physiological, and phenotypic changes. Mounting evidence has pointed out that micro-RNAs (miRNAs) may have an important role in whole-genome doubling. However, an integrative approach that compares miRNA expression in polyploids is still lacking. Here, a re-analysis of already published RNAseq datasets was performed to identify microRNAs’ precursors (pre-miRNAs) in diploids (2x) and tetraploids (4x) of five species (Arabidopsis thaliana L., Morus alba L., Brassica rapa L., Isatis indigotica Fort., and Solanum commersonii Dun). We found 3568 pre-miRNAs, three of which (pre-miR414, pre-miR5538, and pre-miR5141) were abundant in all 2x, and were absent/low in their 4x counterparts. They are predicted to target more than one mRNA transcript, many belonging to transcription factors (TFs), DNA repair mechanisms, and related to stress. Sixteen pre-miRNAs were found in common in all 2x and 4x. Among them, pre-miRNA482, pre-miRNA2916, and pre-miRNA167 changed their expression after polyploidization, being induced or repressed in 4x plants. Based on our results, a common ploidy-dependent response was triggered in all species under investigation, which involves DNA repair, ATP-synthesis, terpenoid biosynthesis, and several stress-responsive transcripts. In addition, an ad hoc pre-miRNA expression analysis carried out solely on 2x vs. 4x samples of S. commersonii indicated that ploidy-dependent pre-miRNAs seem to actively regulate the nucleotide metabolism, probably to cope with the increased requirement for DNA building blocks caused by the augmented DNA content. Overall, the results outline the critical role of microRNA-mediated responses following autopolyploidization in plants

    Highlights of meiotic genes in Arabidopsis thaliana

    Get PDF
    Meiosis is a fascinating and complex phenomenon and, despite its central role in sexual plant reproduction, little is known on the molecular mechanisms involved in this process. We review the progress made in recent years using Arabidopsis thaliana mutants for isolating meiotic genes. In particular, emphasis is given on the description of mutants affecting either the regular commitment to meiosis, or the mechanisms of synapsis, recombination, and cytokinesis. We believe that the isolation of genes affecting some crucial meiotic events may represent the first step towards the practical use of meiotic genes in plant breeding. The introduction of deviations in the meiotic pathway into sexual crops will have important implications for the exploitation of apomixis and sexual polyploidization. Key words: Arabidopsis, meiosis, mutants, fertility. African Journal of Biotechnology Vol. 2 (12), pp.516-520, December 200

    High-Throughput Genomics Enhances Tomato Breeding Efficiency

    Get PDF
    Tomato (Solanum lycopersicum) is considered a model plant species for a group of economically important crops, such as potato, pepper, eggplant, since it exhibits a reduced genomic size (950 Mb), a short generation time, and routine transformation technologies. Moreover, it shares with the other Solanaceous plants the same haploid chromosome number and a high level of conserved genomic organization. Finally, many genomic and genetic resources are actually available for tomato, and the sequencing of its genome is in progress. These features make tomato an ideal species for theoretical studies and practical applications in the genomics field. The present review describes how structural genomics assist the selection of new varieties resistant to pathogens that cause damage to this crop. Many molecular markers highly linked to resistance genes and cloned resistance genes are available and could be used for a high-throughput screening of multiresistant varieties. Moreover, a new genomics-assisted breeding approach for improving fruit quality is presented and discussed. It relies on the identification of genetic mechanisms controlling the trait of interest through functional genomics tools. Following this approach, polymorphisms in major gene sequences responsible for variability in the expression of the trait under study are then exploited for tracking simultaneously favourable allele combinations in breeding programs using high-throughput genomic technologies. This aims at pyramiding in the genetic background of commercial cultivars alleles that increase their performances. In conclusion, tomato breeding strategies supported by advanced technologies are expected to target increased productivity and lower costs of improved genotypes even for complex traits

    Variation of DNA methylation and phenotypic traits following unilateral sexual polyploidization in Medicago

    Get PDF
    Sexual hybridization is an important generator of biodiversity and a powerful breeding tool. Hybridization can also overcome ploidy barriers when it involves 2n gametes, as in the case of unilateral sexual polyploidization (USP) that has been utilized in several crops, among which alfalfa. This research was aimed at gaining insights into the effects of USP on genome methylation and on phenotypic traits in alfalfa, an important forage species. The Methylation-Sensi- tive Amplified Polymorphism technique was used to estimate the cytosine methylation changes occurring in a tetraploid (2n = 4x = 32) USP progeny from crosses between a diploid Medicago sativa subsp. falcata genotype that produces 2n eggs and a cultivated tetraploid Medicago sativa subsp. sativa variety. De novo methylation or demethylation in the USP progeny were observed for 13% of the detected genomic sites, indicating that methylation changes can be relevant. USP plants showed larger surface area of the leaf epidermis cells than both parents, but this did not result in larger leaf size or higher plant biomass. They displayed significant higher ovule sterility than the tetraploid parent, but normal fertility was observed in crosses with unrelated male testers. We conclude that hybridization and sexual polyploidization resulted in novel variation in terms of remodeling of the methylation landscape as well as changes in phenotypic traits in alfalfa

    Coexpression gene network analysis of cold-tolerant Solanum commersonii reveals new insights in response to low temperatures

    Get PDF
    Among abiotic stressors, cold is one of the most harmful for the cultivated potato (Solanum tuberosum L.), a frost-sensitive crop. RNA sequencing (RNA-seq) profiling of two different clones of wild potato (S. commersonii Dun.) contrasting in their capacity to withstand low temperatures revealed a higher number of differentially expressed genes (DEGs) under nonacclimated conditions (NAC) in tolerant clone cmm1T vs. the susceptible cmm6-6 (1,002 and 8,055 DEGs, respectively). By contrast, the number of DEGs was much more comparable when both genotypes were under acclimated conditions (AC). Indeed, a total of 5,650 and 8,936 DEGs were detected in the tolerant genotype vs. the susceptible. Gene ontology (GO) classification under NAC showed a significant role for transcription regulation, lignin catabolic genes, and regulation of plant type secondary cell wall in the cold-tolerant genotypes, suggesting an important role in conferring tolerance response. By contrast, response to stress and response to stimuli were enriched GO categories in both clones under AC. Unsigned weighted correlation networks analysis (WGCNA) allowed identification of coexpressed hub genes with possible main regulatory functions and major impacts on the phenotype. Among those identified, we clarified the role of CBF4. This gene showed contrasting expression profiles in the two clones under NAC, being induced in cold-tolerant cmm1T but suppressed in susceptible cmm6-6. By contrast, under AC, CBF4 was upregulated in both clones. Our study provides a global understanding of mechanisms involved following exposure to NAC and AC in S. commersonii. The mechanisms described here will inform future investigations for detailed validation in studies regarding cold tolerance in plants

    Anthocyanins are Key Regulators of Drought Stress Tolerance in Tobacco

    Get PDF
    Abiotic stresses will be one of the major challenges for worldwide food supply in the near future. Therefore, it is important to understand the physiological mechanisms that mediate plant responses to abiotic stresses. When subjected to UV, salinity or drought stress, plants accumulate specialized metabolites that are often correlated with their ability to cope with the stress. Among them, anthocyanins are the most studied intermediates of the phenylpropanoid pathway. However, their role in plant response to abiotic stresses is still under discussion. To better understand the effects of anthocyanins on plant physiology and morphogenesis, and their implications on drought stress tolerance, we used transgenic tobacco plants (AN1), which over-accumulated anthocyanins in all tissues. AN1 plants showed an altered phenotype in terms of leaf gas exchanges, leaf morphology, anatomy and metabolic profile, which conferred them with a higher drought tolerance compared to the wild-type plants. These results provide important insights for understanding the functional reason for anthocyanin accumulation in plants under stress

    Impact of ploidy change on secondary metabolites and photochemical efficiency in Solanum bulbocastanum Dun.

    Get PDF
    Plants are well known for producing a wide diversity of natural compounds and several strategies have been proposed to enhance their production. Among them, somatic chromosome doubling may represent an effective and inexpensive method. The objective of the current study was to investigate the effect of polyploidization on the leaf metabolic profile and content of tetraploids produced from a wild diploid (2n=2x=24) potato species, Solanum bulbocastanum Dun. Photochemical efficiency of tetraploids was also analyzed. Results from HPLC-DAD and LC/MS analyses provided evidence that tetraploid genotypes displayed either a similar or a lower phenylpropanoids, tryptophan, tyrosine and α-chaconine content compared with the diploid parent. Similarly, no significant differences were found among genotypes both for measures of gas and for chlorophyll fluorescence, except for non-photochemical quenching (NPQ). Steroidal saponins content revealed superiority of some tetraploids with respect to the diploid parent, suggesting perturbations in the mechanism regulating the biosynthesis of such compounds following polyploidization. Lack of superiority may be attributed to the time required for adjustment, adaptation and evolution after the genomic shock induced by polyploidization, as well as the fact that an optimum ploidy level for each species may be crucial. Our results suggest that polyploidization as a strategy to enhance metabolite production cannot be generalized

    Analysis of cytosine methylation in genomic dna of solanum × michoacanum (+) s. tuberosum somatic hybrids

    Get PDF
    Interspecific somatic hybridization is a noteworthy breeding strategy that allows the production of novel genetic variability when crossing barriers exist between two parental species. Although the genetic consequences of somatic hybridization have been well documented, little is known on its impact at the epigenetic level. The objective of our research was to investigate the epigenetic changes, in particular DNA methylation, occurring in a population of potato somatic hybrids. The analysis of 96 Solanum × michoacanum (+) S. tuberosum somatic hybrids from five fusion combinations and their parents was carried out by methylation-sensitive amplified polymorphism (MSAP) and high-performance liquid chromatography (HPLC) methods. Six MSAP primer combinations generated 622 unique bands, of which 295 were fully methylated. HPLC analysis showed from 15.5% to 16.9% total cytosine methylation within the parental forms. Overall, the MSAP and HPLC methods indicated an increase in DNA methylation in the somatic hybrids in comparison to their parents. Among the latter, a lower degree of DNA methylation in the wild S. × michoacanum species than S. tuberosum was found. Our findings indicated that somatic hybridization changed the level of cytosine methylation in the studied potato somatic hybrids

    Tuber yield and processing traits of potato advanced selections

    Get PDF
    World potato production continuously requires new cultivars to satisfy farmers’ and consumers’ demand. Tuber yield and quality are some of the main potato breeding targets. In this study, 27 advanced potato clones from 7 hybrid families were evaluated for yield, tuber specific gravity and chipping ability. Variability in tuber yield was found between families as well as between clones. Forty-eight percent of clones showed higher productivity compared to the best control (Agria, 1.1 Kg). Families displayed significant differences also in terms of tubers specific gravity, with about 70% of clones with a score higher than 1.080, which was considered the minimum acceptable value for processing. Chipping ability was evaluated at harvesting time and after cold storage with and without reconditioning. The majority of studied clones showed a good chipping ability score (<4.5) at harvest; five samples chipped well after cold storage with reconditioning, while good chippers were not identified after cold storage without reconditioning. The use of an arbitrary index calculated for each clone is proposed to assist the selection of materials with a good trait combination

    Use of SSR and retrotransposon-based markers to interpret the population structure of native grapevines from Southern Italy

    Get PDF
    Native grapevines are the quintessential ele- ments of Southern Italy winemaking, and genomic char- acterization plays a role of primary importance for preservation and sustainable use of these unexploited genetic resources. Among the various molecular techniques available, SSR and retrotransposons-based markers result to be the most valuable for cultivars and biotypes distinc- tiveness. A total of 62 accessions including 38 local grape cultivars were analyzed with 30 SSR, four REMAP and one IRAP markers to assess their genetic diversity and obtain a complete genomic profiling. The use of VrZAG79, VrZAG112, VVS2, VVMD25 and VVMD5 combined with retrotransposon-based markers proved to be the most dis- criminating and polymorphic markers for the rapid and unambiguous identification of minority grapevines from Campania region, which is considered one of the most appreciated Italian districts for wine production. Results revealed 58 SSR marker-specific alleles, 22 genotype- specific SSR alleles, and four REMAP and IRAP private bands. Cases of synonymy and homonymy were discov- ered. In conclusion, we provided evidences that the inte- grating SSR and retrotransposon-based markers is an effective strategy to assess the genetic diversity of autochthonous grapes, allowing their easy identification
    • 

    corecore