9,510 research outputs found
Parallel Mapper
The construction of Mapper has emerged in the last decade as a powerful and
effective topological data analysis tool that approximates and generalizes
other topological summaries, such as the Reeb graph, the contour tree, split,
and joint trees. In this paper, we study the parallel analysis of the
construction of Mapper. We give a provably correct parallel algorithm to
execute Mapper on multiple processors and discuss the performance results that
compare our approach to a reference sequential Mapper implementation. We report
the performance experiments that demonstrate the efficiency of our method
The Formation of IRIS diagnostics. IV. The Mg II triplet lines as a new diagnostic for lower chromospheric heating
A triplet of subordinate lines of Mg II exists in the region around the h&k
lines. In solar spectra these lines are seen mostly in absorption, but in some
cases can become emission lines. The aim of this work is to study the formation
of this triplet, and investigate any diagnostic value they can bring. Using 3D
radiative magnetohydrodynamic simulations of quiet Sun and flaring flux
emergence, we synthesize spectra and investigate how spectral features respond
to the underlying atmosphere. We find that emission in the lines is rare and is
typically caused by a steep temperature increase in the lower chromosphere
(above 1500 K, with electron densities above 10 m). In both
simulations the lines are sensitive to temperature increases taking place at
column masses >= 5e-4 g cm. Additional information can also be inferred
from the peak-to-wing ratio and shape of the line profiles. Using observations
from NASA's Interface Region Imaging Spectrograph we find both absorption and
emission line profiles with similar shapes to the synthetic spectra, which
suggests that these lines represent a useful diagnostic that complements the
MgII h&k lines.Comment: 8 pages, 7 figures. Accepted for publication in Ap
The formation of IRIS diagnostics I. A quintessential model atom of Mg II and general formation properties of the Mg II h&k lines
NASA's Interface Region Imaging Spectrograph (IRIS) space mission will study
how the solar atmosphere is energized. IRIS contains an imaging spectrograph
that covers the Mg II h&k lines as well as a slit-jaw imager centered at Mg II
k. Understanding the observations will require forward modeling of Mg II h&k
line formation from 3D radiation-MHD models. This paper is the first in a
series where we undertake this forward modeling. We discuss the atomic physics
pertinent to h&k line formation, present a quintessential model atom that can
be used in radiative transfer computations and discuss the effect of partial
redistribution (PRD) and 3D radiative transfer on the emergent line profiles.
We conclude that Mg II h&k can be modeled accurately with a 4-level plus
continuum Mg II model atom. Ideally radiative transfer computations should be
done in 3D including PRD effects. In practice this is currently not possible. A
reasonable compromise is to use 1D PRD computations to model the line profile
up to and including the central emission peaks, and use 3D transfer assuming
complete redistribution to model the central depression.Comment: 13 pages, 13 figures, accepted for Ap
RADYN simulations of non-thermal and thermal models of Ellerman bombs
Ellerman bombs (EBs) are brightenings in the H line wings that are
believed to be caused by magnetic reconnection in the lower atmosphere. To
study the response and evolution of the chromospheric line profiles, we perform
radiative hydrodynamic simulations of EBs using both non-thermal and thermal
models. Overall, these models can generate line profiles that are similar to
observations. However, in non-thermal models we find dimming in the H
line wings and continuum when the heating begins, while for the thermal models
dimming occurs only in the H line core, and with a longer lifetime.
This difference in line profiles can be used to determine whether an EB is
dominated by non-thermal heating or thermal heating. In our simulations, if a
higher heating rate is applied, the H line will be unrealistically
strong, while there are still no clear UV burst signatures.Comment: 20 pages, 9 figures, accepted for publication in Ap
Large-scale exact diagonalizations reveal low-momentum scales of nuclei
Ab initio methods aim to solve the nuclear many-body problem with controlled
approximations. Virtually exact numerical solutions for realistic interactions
can only be obtained for certain special cases such as few-nucleon systems.
Here we extend the reach of exact diagonalization methods to handle model
spaces with dimension exceeding on a single compute node. This allows
us to perform no-core shell model (NCSM) calculations for 6Li in model spaces
up to and to reveal the 4He+d halo structure of this
nucleus. Still, the use of a finite harmonic-oscillator basis implies
truncations in both infrared (IR) and ultraviolet (UV) length scales. These
truncations impose finite-size corrections on observables computed in this
basis. We perform IR extrapolations of energies and radii computed in the NCSM
and with the coupled-cluster method at several fixed UV cutoffs. It is shown
that this strategy enables information gain also from data that is not fully UV
converged. IR extrapolations improve the accuracy of relevant bound-state
observables for a range of UV cutoffs, thus making them profitable tools. We
relate the momentum scale that governs the exponential IR convergence to the
threshold energy for the first open decay channel. Using large-scale NCSM
calculations we numerically verify this small-momentum scale of finite nuclei.Comment: Minor revisions.Accepted for publication in Physical Review
Modeling of Covalent Bonding in Solids by Inversion of Cohesive Energy Curves
We provide a systematic test of empirical theories of covalent bonding in
solids using an exact procedure to invert ab initio cohesive energy curves. By
considering multiple structures of the same material, it is possible for the
first time to test competing angular functions, expose inconsistencies in the
basic assumption of a cluster expansion, and extract general features of
covalent bonding. We test our methods on silicon, and provide the direct
evidence that the Tersoff-type bond order formalism correctly describes
coordination dependence. For bond-bending forces, we obtain skewed angular
functions that favor small angles, unlike existing models. As a
proof-of-principle demonstration, we derive a Si interatomic potential which
exhibits comparable accuracy to existing models.Comment: 4 pages revtex (twocolumn, psfig), 3 figures. Title and some wording
(but no content) changed since original submission on 24 April 199
The Effects of Spatio-temporal Resolution on Deduced Spicule Properties
Spicules have been observed on the sun for more than a century, typically in
chromospheric lines such as H-alpha and Ca II H. Recent work has shown that
so-called 'type II' spicules may have a role in providing mass to the corona
and the solar wind. In chromospheric filtergrams these spicules are not seen to
fall back down, and they are shorter-lived and more dynamic than the spicules
that have been classically reported in ground-based observations. Observations
of type II spicules with Hinode show fundamentally different properties from
what was previously measured. In earlier work we showed that these dynamic type
II spicules are the most common type, a view that was not properly identified
by early observations.The aim of this work is to investigate the effects of
spatio-temporal resolution in the classical spicule measurements. Making use of
Hinode data degraded to match the observing conditions of older ground-based
studies, we measure the properties of spicules with a semi-automated algorithm.
These results are then compared to measurements using the original Hinode data.
We find that degrading the data has a significant effect on the measured
properties of spicules. Most importantly, the results from the degraded data
agree well with older studies (e.g. mean spicule duration more than 5 minutes,
and upward apparent velocities of about 25 km/s). These results illustrate how
the combination of spicule superposition, low spatial resolution and cadence
affect the measured properties of spicules, and that previous measurements can
be misleading.Comment: Accepted for publication in ApJ. 5 pages, 3 figures. Movies of
figures 1 and 3 available via Data Conservanc
- …
