529 research outputs found
Onset of Patterns in an Ocillated Granular Layer: Continuum and Molecular Dynamics Simulations
We study the onset of patterns in vertically oscillated layers of
frictionless dissipative particles. Using both numerical solutions of continuum
equations to Navier-Stokes order and molecular dynamics (MD) simulations, we
find that standing waves form stripe patterns above a critical acceleration of
the cell. Changing the frequency of oscillation of the cell changes the
wavelength of the resulting pattern; MD and continuum simulations both yield
wavelengths in accord with previous experimental results. The value of the
critical acceleration for ordered standing waves is approximately 10% higher in
molecular dynamics simulations than in the continuum simulations, and the
amplitude of the waves differs significantly between the models. The delay in
the onset of order in molecular dynamics simulations and the amplitude of noise
below this onset are consistent with the presence of fluctuations which are
absent in the continuum theory. The strength of the noise obtained by fit to
Swift-Hohenberg theory is orders of magnitude larger than the thermal noise in
fluid convection experiments, and is comparable to the noise found in
experiments with oscillated granular layers and in recent fluid experiments on
fluids near the critical point. Good agreement is found between the mean field
value of onset from the Swift-Hohenberg fit and the onset in continuum
simulations. Patterns are compared in cells oscillated at two different
frequencies in MD; the layer with larger wavelength patterns has less noise
than the layer with smaller wavelength patterns.Comment: Published in Physical Review
Fluctuations in viscous fingering
Our experiments on viscous (Saffman-Taylor) fingering in Hele-Shaw channels
reveal finger width fluctuations that were not observed in previous
experiments, which had lower aspect ratios and higher capillary numbers Ca.
These fluctuations intermittently narrow the finger from its expected width.
The magnitude of these fluctuations is described by a power law, Ca^{-0.64},
which holds for all aspect ratios studied up to the onset of tip instabilities.
Further, for large aspect ratios, the mean finger width exhibits a maximum as
Ca is decreased instead of the predicted monotonic increase.Comment: Revised introduction, smoothed transitions in paper body, and added a
few additional minor results. (Figures unchanged.) 4 pages, 3 figures.
Submitted to PRE Rapi
Persistent holes in a fluid
We observe stable holes in a vertically oscillated 0.5 cm deep aqueous
suspension of cornstarch for accelerations a above 10g. Holes appear only if a
finite perturbation is applied to the layer. Holes are circular and
approximately 0.5 cm wide, and can persist for more than 10^5 cycles. Above a =
17g the rim of the hole becomes unstable producing finger-like protrusions or
hole division. At higher acceleration, the hole delocalizes, growing to cover
the entire surface with erratic undulations. We find similar behavior in an
aqueous suspension of glass microspheres.Comment: 4 pages, 6 figure
Continuum-type stability balloon in oscillated granular layers
The stability of convection rolls in a fluid heated from below is limited by
secondary instabilities, including the skew-varicose and crossroll
instabilities. We observe a stability boundary defined by the same
instabilities in stripe patterns in a vertically oscillated granular layer.
Molecular dynamics simulations show that the mechanism of the skew-varicose
instability in granular patterns is similar to that in convection. These
results suggest that pattern formation in granular media can be described by
continuum models analogous to those used in fluid systems.Comment: 4 pages, 6 ps figs, submitted to PR
Breathing Spots in a Reaction-Diffusion System
A quasi-2-dimensional stationary spot in a disk-shaped chemical reactor is
observed to bifurcate to an oscillating spot when a control parameter is
increased beyond a critical value. Further increase of the control parameter
leads to the collapse and disappearance of the spot. Analysis of a bistable
activator-inhibitor model indicates that the observed behavior is a consequence
of interaction of the front with the boundary near a parity breaking front
bifurcation.Comment: 4 pages RevTeX, see also http://chaos.ph.utexas.edu/ and
http://t7.lanl.gov/People/Aric
Transport Coefficients for Granular Media from Molecular Dynamics Simulations
Under many conditions, macroscopic grains flow like a fluid; kinetic theory
pred icts continuum equations of motion for this granular fluid. In order to
test the theory, we perform event driven molecular simulations of a
two-dimensional gas of inelastic hard disks, driven by contact with a heat
bath. Even for strong dissipation, high densities, and small numbers of
particles, we find that continuum theory describes the system well. With a bath
that heats the gas homogeneously, strong velocity correlations produce a
slightly smaller energy loss due to inelastic collisions than that predicted by
kinetic theory. With an inhomogeneous heat bath, thermal or velocity gradients
are induced. Determination of the resulting fluxes allows calculation of the
thermal conductivity and shear viscosity, which are compared to the predictions
of granular kinetic theory, and which can be used in continuum modeling of
granular flows. The shear viscosity is close to the prediction of kinetic
theory, while the thermal conductivity can be overestimated by a factor of 2;
in each case, transport is lowered with increasing inelasticity.Comment: 14 pages, 17 figures, 39 references, submitted to PRE feb 199
Oscillating Fracture in Rubber
We have found an oscillating instability of fast-running cracks in thin
rubber sheets. A well-defined transition from straight to oscillating cracks
occurs as the amount of biaxial strain increases. Measurements of the amplitude
and wavelength of the oscillation near the onset of this instability indicate
that the instability is a Hopf bifurcation
Onset of Surface-Tension-Driven Benard Convection
Experiments with shadowgraph visualization reveal a subcritical transition to
a hexagonal convection pattern in thin liquid layers that have a free upper
surface and are heated from below. The measured critical Marangoni number (84)
and observation of hysteresis (3%) agree with theory. In some experiments,
imperfect bifurcation is observed and is attributed to deterministic forcing
caused in part by the lateral boundaries in the experiment.Comment: 4 pages. The RevTeX file has a macro allowing various styles. The
appropriate style is "mypprint" which is the defaul
Shocks in supersonic sand
We measure time-averaged velocity, density, and temperature fields for steady
granular flow past a wedge and calculate a speed of granular pressure
disturbances (sound speed) equal to 10% of the flow speed. The flow is
supersonic, forming shocks nearly identical to those in a supersonic gas.
Molecular dynamics simulations of Newton's laws and Monte Carlo simulations of
the Boltzmann equation yield fields in quantitative agreement with experiment.
A numerical solution of Navier-Stokes-like equations agrees with a molecular
dynamics simulation for experimental conditions excluding wall friction.Comment: 4 pages, 5 figure
Probing structural relaxation in complex fluids by critical fluctuations
Complex fluids, such as polymer solutions and blends, colloids and gels, are
of growing interest in fundamental and applied soft-condensed-matter science. A
common feature of all such systems is the presence of a mesoscopic structural
length scale intermediate between atomic and macroscopic scales. This
mesoscopic structure of complex fluids is often fragile and sensitive to
external perturbations. Complex fluids are frequently viscoelastic (showing a
combination of viscous and elastic behaviour) with their dynamic response
depending on the time and length scales. Recently, non-invasive methods to
infer the rheological response of complex fluids have gained popularity through
the technique of microrheology, where the diffusion of probe spheres in a
viscoelastic fluid is monitored with the aid of light scattering or microscopy.
Here we propose an alternative to traditional microrheology that does not
require doping of probe particles in the fluid (which can sometimes drastically
alter the molecular environment). Instead, our proposed method makes use of the
phenomenon of "avoided crossing" between modes associated with the structural
relaxation and critical fluctuations that are spontaneously generated in the
system.Comment: 4 pages, 4 figure
- …
