2,288 research outputs found
Unconventional magnetism in all-carbon nanofoam
We report production of nanostructured carbon foam by a high-repetition-rate,
high-power laser ablation of glassy carbon in Ar atmosphere. A combination of
characterization techniques revealed that the system contains both sp2 and sp3
bonded carbon atoms. The material is a novel form of carbon in which
graphite-like sheets fill space at very low density due to strong hyperbolic
curvature, as proposed for ?schwarzite?. The foam exhibits ferromagnetic-like
behaviour up to 90 K, with a narrow hysteresis curve and a high saturation
magnetization. Such magnetic properties are very unusual for a carbon
allotrope. Detailed analysis excludes impurities as the origin of the magnetic
signal. We postulate that localized unpaired spins occur because of topological
and bonding defects associated with the sheet curvature, and that these spins
are stabilized due to the steric protection offered by the convoluted sheets.Comment: 14 pages, including 2 tables and 7 figs. Submitted to Phys Rev B 10
September 200
Generation of spin currents via Raman scattering
We show theoretically that stimulated spin flip Raman scattering can be used
to inject spin currents in doped semiconductors with spin split bands. A pure
spin current, where oppositely oriented spins move in opposite directions, can
be injected in zincblende crystals and structures. The calculated spin current
should be detectable by pump-probe optical spectroscopy and anomalous Hall
effect measurement
Magneto-optic Kerr effect in a spin-polarized zero-moment ferrimagnet
The magneto-optical Kerr effect (MOKE) is often assumed to be proportional to
the magnetisation of a magnetically ordered metallic sample; in metallic
ferrimagnets with chemically distinct sublattices, such as rare-earth
transition-metal alloys, it depends on the difference between the sublattice
contributions. Here we show that in a highly spin polarized, fully compensated
ferrimagnet, where the sublattices are chemically similar, MOKE is observed
even when the net moment is strictly zero. We analyse the spectral ellipsometry
and MOKE of Mn 2 Ru x Ga, and show that this behaviour is due to a highly
spin-polarized conduction band dominated by one of the two manganese
sublattices which creates helicity-dependent reflectivity determined by a broad
Drude tail. Our findings open new prospects for studying spin dynamics in the
infra-red.Comment: 7 pages, 7 figure
Spin relaxation of conduction electrons in bulk III-V semiconductors
Spin relaxation time of conduction electrons through the Elliot-Yafet,
D'yakonov-Perel and Bir-Aronov-Pikus mechanisms is calculated theoretically for
bulk GaAs, GaSb, InAs and InSb of both - and -type. Relative importance
of each spin relaxation mechanism is compared and the diagrams showing the
dominant mechanism are constructed as a function of temperature and impurity
concentrations. Our approach is based upon theoretical calculation of the
momentum relaxation rate and allows understanding of the interplay between
various factors affecting the spin relaxation over a broad range of temperature
and impurity concentration.Comment: an error in earlier version correcte
Gallium transformation under femtosecond laser excitation: Phase coexistence and incomplete melting
The reversible phase transition induced by femtosecond laser excitation of
Gallium has been studied by measuring the dielectric function at 775 nm with ~
200 fs temporal resolution. The real and imaginary parts of the transient
dielectric function were calculated from absolute reflectivity of Gallium layer
measured at two different angles of incidence, using Fresnel formulas. The
time-dependent electron-phonon effective collision frequency, the heat
conduction coefficient and the volume fraction of a new phase were restored
directly from the experimental data, and the time and space dependent electron
and lattice temperatures in the layer undergoing phase transition were
reconstructed without ad hoc assumptions. We converted the temporal dependence
of the electron-phonon collision rate into the temperature dependence, and
demonstrated, for the first time, that the electron-phonon collision rate has a
non-linear character. This temperature dependence converges into the known
equilibrium function during the cooling stage. The maximum fraction of a new
phase in the laser-excited Gallium layer reached only 60% even when the
deposited energy was two times the equilibrium enthalpy of melting. We have
also demonstrated that the phase transition pace and a fraction of the
transformed material depended strongly on the thickness of the laser-excited
Gallium layer, which was of the order of several tens of nanometers for the
whole range of the pump laser fluencies up to the damage threshold. The
kinetics of the phase transformation after the laser excitation can be
understood on the basis of the classical theory of the first-order phase
transition while the duration of non-thermal stage appears to be comparable to
the sub-picosecond pulse length.Comment: 28 pages, including 9 figs. Submitted to Phys. Rev. B 14 March 200
Nanosized superparamagnetic precipitates in cobalt-doped ZnO
The existence of semiconductors exhibiting long-range ferromagnetic ordering
at room temperature still is controversial. One particularly important issue is
the presence of secondary magnetic phases such as clusters, segregations,
etc... These are often tedious to detect, leading to contradictory
interpretations. We show that in our cobalt doped ZnO films grown
homoepitaxially on single crystalline ZnO substrates the magnetism
unambiguously stems from metallic cobalt nano-inclusions. The magnetic behavior
was investigated by SQUID magnetometry, x-ray magnetic circular dichroism, and
AC susceptibility measurements. The results were correlated to a detailed
microstructural analysis based on high resolution x-ray diffraction,
transmission electron microscopy, and electron-spectroscopic imaging. No
evidence for carrier mediated ferromagnetic exchange between diluted cobalt
moments was found. In contrast, the combined data provide clear evidence that
the observed room temperature ferromagnetic-like behavior originates from
nanometer sized superparamagnetic metallic cobalt precipitates.Comment: 20 pages, 6 figures; details about background subtraction added to
section III. (XMCD
Toward homochiral protocells in noncatalytic peptide systems
The activation-polymerization-epimerization-depolymerization (APED) model of
Plasson et al. has recently been proposed as a mechanism for the evolution of
homochirality on prebiotic Earth. The dynamics of the APED model in
two-dimensional spatially-extended systems is investigated for various
realistic reaction parameters. It is found that the APED system allows for the
formation of isolated homochiral proto-domains surrounded by a racemate. A
diffusive slowdown of the APED network such as induced through tidal motion or
evaporating pools and lagoons leads to the stabilization of homochiral bounded
structures as expected in the first self-assembled protocells.Comment: 10 pages, 5 figure
Graphene as a quantum surface with curvature-strain preserving dynamics
We discuss how the curvature and the strain density of the atomic lattice
generate the quantization of graphene sheets as well as the dynamics of
geometric quasiparticles propagating along the constant curvature/strain
levels. The internal kinetic momentum of Riemannian oriented surface (a vector
field preserving the Gaussian curvature and the area) is determined.Comment: 13p, minor correction
Low pH enhances the action of maximin H5 against Staphylococcus aureus and helps mediate lysylated phosphatidylglycerol induced resistance
Maximin H5 (MH5) is an amphibian antimicrobial peptide specifically targeting Staphylococcus aureus. At pH 6, the peptide showed an increased ability to penetrate (∆П = 6.2 mN m-1) and lyse (lysis = 48 %) S. aureus membrane mimics, which incorporated physiological levels of lysylated phosphatidylglycerol (Lys-PG, 60 %) as compared to pH 7 (∆П = 5.6 mN m-1 and lysis = 40 % at pH 7) where levels of Lys-PG are lower (40 %). The peptide therefore appears to have optimal function at pH levels known to be optimal for the organism’s growth. MH5 killed S. aureus (minimum inhibitory concentration = 90 µM) via membranolytic mechanisms that involved the stabilization of α-helical structure (circa 45-50 %) and which showed similarities to the ‘Carpet’ mechanism based on its ability to increase the rigidity (Cs-1 = 109.94 mN m-1) and thermodynamic stability (∆Gmix = -3.0) of physiologically relevant S. aureus membrane mimics at pH 6. Based on theoretical analysis this mechanism may involve the use of a tilted peptide structure and efficacy was noted to vary inversely with the Lys-PG content of S. aureus membrane mimics for each pH studied (R2 circa 0.97), which led to the suggestion that under biologically relevant conditions, low pH helps mediate Lys-PG induced resistance in S. aureus to MH5 antibacterial action. The peptide showed a lack of haemolytic activity (< 2 % haemolysis) and merits further investigation as a potential template for development as an anti-staphylococcal agent in medically and biotechnically relevant areas
- …
