4,813 research outputs found

    Unexpected Effect of Internal Degrees of Freedom on Transverse Phonons in Supercooled Liquids

    Full text link
    We show experimentally that in a supercooled liquid composed of molecules with internal degrees of freedom the internal modes contribute to the frequency dependent shear viscosity and damping of transverse phonons, which results in an additional broadening of the transverse Brillouin lines. Earlier, only the effect of internal modes on the frequency dependent bulk viscosity and damping of longitudinal phonons was observed and explained theoretically in the limit of weak coupling of internal degrees of freedom to translational motion. A new theory is needed to describe this new effect. We also demonstrate, that the contributions of structural relaxation and internal processes to the width of the Brillouin lines can be separated by measurements under high pressure

    Discovery of a High Proper Motion L Dwarf Binary: 2MASS J15200224-4422419AB

    Full text link
    We report the discovery of the wide L1.5+L4.5 binary 2MASS J15200224-4422419AB, identified during spectroscopic followup of high proper motion sources selected from the Two Micron All Sky Survey. This source was independently identified by Kendall et al. in the SuperCOSMOS Sky Survey. Resolved JHK photometry and low resolution near-infrared spectroscopy demonstrate that this system is composed of two well-separated (1"174+/-0"016) L dwarfs. Component classifications are derived using both spectral ratios and comparison to near-infrared spectra of previously classified field L dwarfs. Physical association for the pair is deduced from the large (mu = 0"73+/-0"03 /yr) common proper motion of the components and their similar spectrophotometric distances (19+/-2 pc). The projected separation of the binary, 22+/-2 AU, is consistent with maximum separation/total system mass trends for very low mass binaries. The 2MASS J1520-4422 system exhibits both large tangential (66+/-7 km/s) and radial velocities (-70+/-18 km/s), and its motion in the local standard of rest suggests that it is an old member of the Galactic disk population. This system joins a growing list of well-separated (>0"5), very low mass binaries, and is an excellent target for resolved optical spectroscopy to constrain its age as well as trace activity/rotation trends near the hydrogen-burning limit.Comment: 35 pages, 8 figures; accepted for publication to ApJ; see also Kendall et al. astro-ph/060939

    Dynamic structure factors of a dense mixture

    Full text link
    We compute the dynamic structure factors of a dense binary liquid mixture. These describe dynamics on molecular length scales, where structural relaxation is important. We find that the presence of a few large particles in a dense fluid of small particles slows down the dynamics considerably. We also observe a deep narrowing of the spectrum for a disordered mixture composed of a nearly equal packing of the two species. In contrast, a few small particles diffuse easily in the background of a dense fluid of large particles. We expect our results to describe neutron scattering from a dense mixture

    A Global Photometric Analysis of 2MASS Calibration Data

    Get PDF
    We present results from the application of a global photometric calibration (GPC) procedure to calibration data from the first 2 years of The Two Micron All Sky Survey (2MASS). The GPC algorithm uses photometry of both primary standards and moderately bright `tracer' stars in 35 2MASS calibration fields. During the first two years of the Survey, each standard was observed on approximately 50 nights, with about 900 individual measurements. Based on the photometry of primary standard stars and secondary tracer stars and under the assumption that the nightly zeropoint drift is linear, GPC ties together all calibration fields and all survey nights simultaneously, producing a globally optimized solution. Calibration solutions for the Northern and Southern hemisphere observatories are found separately, and are tested for global consistency based on common fields near the celestial equator. Several results from the GPC are presented, including establishing candidate secondary standards, monitoring of near-infrared atmospheric extinction coefficients, and verification of global validity of the standards. The solution gives long-term averages of the atmospheric extinction coefficients, A_J=0.096, A_H=0.026, A_{K_s}=0.066 (North) and A_J=0.092, A_H=0.031, A_{K_s}=0.065 (South), with formal error of 0.001. The residuals show small seasonal variations, most likely due to changing atmospheric content of water vapor. Extension of the GPC to approximately 100 field stars in each of the 35 calibration fields yields a catalog of more than two thousand photometric standards ranging from 10th to 14th magnitude, with photometry that is globally consistent to 1\sim 1%.Comment: 19 pages, 10 figures; Submitted to AJ. The table of secondary standards is available from ftp://nova.astro.umass.edu/pub/nikolaev/ or ftp://anon-ftp.ipac.caltech.edu/pub/2mass/globalcal

    Solidity of viscous liquids. V. Long-wavelength dominance of the dynamics

    Get PDF
    This paper is the fifth in a series exploring the physical consequences of the solidity of glass-forming liquids. Paper IV proposed a model where the density field is described by a time-dependent Ginzburg-Landau equation of the nonconserved type with rates in kk space of the form Γ0+Dk2\Gamma_0+Dk^2. The model assumes that DΓ0a2D\gg\Gamma_0a^2 where aa is the average intermolecular distance; this inequality expresses a long-wavelength dominance of the dynamics which implies that the Hamiltonian (free energy) to a good approximation may be taken to be ultralocal. In the present paper we argue that this is the simplest model consistent with the following three experimental facts: 1) Viscous liquids approaching the glass transition do not develop long-range order; 2) The glass has lower compressibility than the liquid; 3) The alpha process involves several decades of relaxation times shorter than the mean relaxation time. The paper proceeds to list six further experimental facts characterizing equilibrium viscous liquid dynamics and shows that these are readily understood in terms of the model; some are direct consequences, others are quite natural when viewed in light of the model

    Growing spatial correlations of particle displacements in a simulated liquid on cooling toward the glass transition

    Full text link
    We define a correlation function that quantifies the spatial correlation of single-particle displacements in liquids and amorphous materials. We show for an equilibrium liquid that this function is related to fluctuations in a bulk dynamical variable. We evaluate this function using computer simulations of an equilibrium glass-forming liquid, and show that long range spatial correlations of displacements emerge and grow on cooling toward the mode coupling critical temperature

    Decoupling of diffusion from structural relaxation and spatial heterogeneity in a supercooled simple liquid

    Full text link
    We report a molecular dynamics simulation of a supercooled simple monatomic glass-forming liquid. It is found that the onset of the supercooled regime results in formation of distinct domains of slow diffusion which are confined to the long-lived icosahedrally structured clusters associated with deeper minima in the energy landscape. As these domains, possessing a low-dimensional geometry, grow with cooling and percolate below TcT_c, the critical temperature of the mode coupling theory, a sharp slowing down of the structural relaxation relative to diffusion is observed. It is concluded that this latter anomaly cannot be accounted for by the spatial variation in atomic mobility; instead, we explain it as a direct result of the configuration-space constraints imposed by the transient structural correlations. We also conjecture that the observed tendency for low-dimensional clustering may be regarded as a possible mechanism of fragility.Comment: To be published in PR

    Diffusion and viscosity in a supercooled polydisperse system

    Get PDF
    We have carried out extensive molecular dynamics simulations of a supercooled polydisperse Lennard-Jones liquid with large variations in temperature at a fixed pressure. The particles in the system are considered to be polydisperse both in size and mass. The temperature dependence of the dynamical properties such as the viscosity (η\eta) and the self-diffusion coefficients (DiD_i) of different size particles is studied. Both viscosity and diffusion coefficients show super-Arrhenius temperature dependence and fit well to the well-known Vogel-Fulcher-Tammann (VFT) equation. Within the temperature range investigated, the value of the Angell's fragility parameter (D 1.4\approx 1.4) classifies the present system into a strongly fragile liquid. The critical temperature for diffusion (ToDiT_o^{D_i}) increases with the size of the particles. The critical temperature for viscosity (ToηT_o^{\eta}) is larger than that for the diffusion and a sizeable deviations appear for the smaller size particles implying a decoupling of translational diffusion from viscosity in deeply supercooled liquid. Indeed, the diffusion shows markedly non-Stokesian behavior at low temperatures where a highly nonlinear dependence on size is observed. An inspection of the trajectories of the particles shows that at low temperatures the motions of both the smallest and largest size particles are discontinuous (jump-type). However, the crossover from continuous Brownian to large length hopping motion takes place at shorter time scales for the smaller size particles.Comment: Revtex4, 7 pages, 8 figure

    High-Temperature series for the RPn1RP^{n-1} lattice spin model (generalized Maier-Saupe model of nematic liquid crystals) in two space dimensions and with general spin dimensionality n

    Full text link
    High temperature series expansions of the spin-spin correlation functions of the RP^{n-1} spin model on the square lattice are computed through order beta^{8} for general spin dimensionality n. Tables are reported for the expansion coefficients of the energy per site, the susceptibility and the second correlation moment.Comment: 6 pages, revtex, IFUM 419/FT, 2 figures not include

    Light scattering spectra of supercooled molecular liquids

    Full text link
    The light scattering spectra of molecular liquids are derived within a generalized hydrodynamics. The wave vector and scattering angle dependences are given in the most general case and the change of the spectral features from liquid to solidlike is discussed without phenomenological model assumptions for (general) dielectric systems without long-ranged order. Exact microscopic expressions are derived for the frequency-dependent transport kernels, generalized thermodynamic derivatives and the background spectra.Comment: 12 page
    corecore