3,653 research outputs found

    Nimbus-7 Scanning Multichannel Microwave Radiometer (SMMR) PARM tape user's guide

    Get PDF
    The Scanning Multichannel Microwave Radiometer (SMMR) instrument, onboard the Nimbus-7 spacecraft, collected data from Oct. 1978 until Jun. 1986. The data were processed to physical parameter level products. Geophysical parameters retrieved include the following: sea-surface temperatures, sea-surface windspeed, total column water vapor, and sea-ice parameters. These products are stored on PARM-LO, PARM-SS, and PARM-30 tapes. The geophysical parameter retrieval algorithms and the quality of these products are described for the period between Nov. 1978 and Oct 1985. Additionally, data formats and data availability are included

    Enantioselective Organocatalytic α-Fluorination of Aldehydes

    Get PDF
    The first direct enantioselective catalytic α-fluorination of aldehydes has been accomplished. The use of enamine catalysis has provided a new organocatalytic strategy for the enantioselective fluorination of aldehydes to generate α-fluoro aldehydes, an important chiral synthon for medicinal agent synthesis. The use of imidazolidinone 1 as the asymmetric catalyst has been found to mediate the fluorination of a large variety of aldehyde substrates with N-fluorobenzenesulfonimide serving as the electrophilic source of fluorine. A diverse spectrum of aldehyde substrates can also be accommodated in this new organocatalytic transformation. While catalyst quantities of 20 mol % were generally employed in this study, successful halogenation can be accomplished using catalyst loadings as low as 2.5 mol %

    Progress toward a 30 percent-efficient, monolithic, three-junction, two-terminal concentrator solar cell for space applications

    Get PDF
    Component efficiencies of 0.2/sq cm cells at approximately 100x AMO light concentration and 80 C temperatures are not at 15.3 percent for a 1.9 eV AlGaAs top cell, 9.9 percent for a 1.4 eV GaAs middle cell under a 1.9 eV AlGaAs filter, and 2.4 percent for a bottom 1.0 eV InGaAs cell under a GaAs substrate. The goal is to continue improvement in these performance levels and to sequentially grow these devices on a single substrate to give 30 percent efficient, monolithic, two-terminal, three-junction space concentrator cells. The broad objective is a 30 percent efficient monolithic two-terminal cell that can operate under 25 to 100x AMO light concentrations and at 75 to 100 C cell temperatures. Detailed modeling predicts that this requires three junctions. Two options are being pursued, and both use a 1.9 eV AlGaAs top junction and a 1.4 eV GaAs middle junction grown by a 1 atm OMVPE on a lattice matched substrate. Option 1 uses a low-doped GaAs substrate with a lattice mismatched 1.0 eV InGaAs cell formed on the back of the substrate. Option 2 uses a Ge substrate to which the AlGaAs and GaAs top junctions are lattice matched, with a bottom 0.7 eV Ge junction formed near the substrate interface with the GaAs growth. The projected efficiency contributions are near 16, 11, and 3 percent, respectively, from the top, middle, and bottom junctions

    Effects of corn oil and benzyl acetate on number and size of azaserine-induced foci in the pancreas of LEW and F344 rats.

    Get PDF
    The response of LEW and F344 strain rats to the pancreatic carcinogen azaserine was compared using the size and number of azaserine-induced acidophilic acinar cell foci and nodules as parameters in a 4-month experiment. A second experiment compared the effect of corn oil intake by gavage and dietary routes on the growth of azaserine-induced pancreatic lesions in LEW rats. A third experiment tested the activity of benzyl acetate in regard to its ability to induce acinar cell foci or to promote the growth of such foci in azaserine-treated rats. The results showed that equivalent doses of azaserine induce two to seven times more foci in LEW than in F344 rats, and that LEW rats have a higher incidence of "spontaneous" foci than F344 rats. Azaserine-treated LEW rats that were given 5 mL corn oil/kg body weight 5 days per week by gavage developed more acinar cell foci than rats fed a basal diet (chow). Addition of an equivalent amount of corn oil to chow had a similar effect of enhancing the development of foci. Rats of neither strain developed acinar cell foci when benzyl acetate was given by gavage or in the diet nor was there evidence that benzyl acetate has a significant effect on the development of foci in azaserine-treated rats. These studies also demonstrate that the azaserine/rat model of pancreatic carcinogenesis which was developed in LEW rats can be adapted for use with F344 rats

    The 25 percent-efficient GaAs Cassegrainian concentrator cell

    Get PDF
    Very high-efficiency GaAs Cassegrainian solar cells have been fabricated in both the n-p and p-n configurations. The n-p configuration exhibits the highest efficiency at concentration, the best cells having an efficiency eta of 24.5 percent (100X, AM0, temperature T = 28 C). Although the cells are designed for operation at this concentration, peak efficiency is observed near 300 suns (eta = 25.1 percent). To our knowledge, this is the highest reported solar cell efficiency for space applications. The improvement in efficiency over that reported at the previous SPRAT conference is attributed primarily to lower series resistance and improved grid-line plating procedures. Using previously measured temperature coefficients, researchers estimate that the n-p GaAs cells should deliver approximately 22.5 percent efficiency at the operating conditions of 100 suns and T = 80 C. This performance exceeds the NASA program goal of 22 percent for the Cassegrainian cell. One hundred Cassegrainian cells have been sent to NASA as deliverables, sixty-eight in the n-p configuration and thirty-two in the p-n configuration

    A statistical selection of on-plate sites based on a VLBI global solution

    Full text link

    The direct arylation of allylic sp3 C–H bonds via organic and photoredox catalysis

    Get PDF
    The direct functionalization of unactivated sp3 C–H bonds is still one of the most challenging problems facing synthetic organic chemists. The appeal of such transformations derives from their capacity to facilitate the construction of complex organic molecules via the coupling of simple and otherwise inert building blocks, without introducing extraneous functional groups. Despite notable recent efforts1, the establishment of general and mild strategies for the engagement of sp3 C–H bonds in C–C bond forming reactions has proved difficult. Within this context, the discovery of chemical transformations that are able to directly functionalize allylic methyl, methylene and methine carbons in a catalytic manner is a priority. Although protocols for direct oxidation and amination of allylic C–H bonds (that is, C–H bonds where an adjacent carbon is involved in a C = C bond) have become widely established2,3, the engagement of allylic substrates in C–C bond forming reactions has thus far required the use of pre-functionalized coupling partners4. In particular, the direct arylation of non-functionalized allylic systems would enable access to a series of known pharmacophores (molecular features responsible for a drug’s action), though a general solution to this long-standing challenge remains elusive. Here we report the use of both photoredox and organic catalysis to accomplish a mild, broadly effective direct allylic C–H arylation. This C–C bond forming reaction readily accommodates a broad range of alkene and electron-deficient arene reactants, and has been used in the direct arylation of benzylic C–H bonds
    • …
    corecore