2 research outputs found

    Reliability and Recommended Settings for Pediatric Circumpapillary Retinal Nerve Fiber Layer Imaging Using Hand-Held Optical Coherence Tomography

    No full text
    To investigate feasibility and reliability of 3-dimensional full circumpapillary retinal nerve fiber layer (cpRNFL) analysis in children, with and without glaucoma, without the use of sedation and to recommend a protocol for hand-held optical coherence tomography use.A cohort of pediatric glaucoma patients and normal children were imaged with hand-held optical coherence tomography to assess the feasibility of obtaining full cpRNFL. Two consecutive scans were acquired in a smaller sample to investigate test-retest repeatability and interassessor reproducibility. The cpRNFL thickness was assessed in four quadrants, at several visual angles from the optic nerve center.Scanning was attempted in both eyes of 90 children with pediatric glaucoma and 180 controls to investigate feasibility (mean age, 6.98 ± 4.42 years). Scanning was not possible in 68 eyes of glaucoma children mainly owing to nystagmus, unclear optical media, or high refractive errors. Where three-dimensional imaging was possible, success at obtaining full cpRNFL was 67% in children with glaucoma and 89% for controls. Seventeen children with pediatric glaucoma and 34 controls contributed to reliability analysis (mean age, 6.3 ± 3.63 years). For repeatability intraclass correlation coefficients across quadrants ranged from 0.63 to 0.82 at 4° and improved to 0.88 to 0.94 at 6°. Intraclass correlation coefficients for reproducibility were also highest at 6° (>0.97 across all quadrants).We demonstrate that acquisition and measurement of cpRNFL thickness values using 3-dimensional hand-held optical coherence tomography volumes in awake children is both feasible and reliable and is optimal at 6° from optic nerve center.Our recommended protocol provides guidance on how pediatric optic nerve pathologies are managed by clinicians.</p
    corecore